MUNCIPAL DEPARTMENT

CEMENT-CONCRETE CULVERTS*

Cement-concrete can hardly be called a new material, for there are viaducts and pavements stlll in existence which were built by the Romans 2,000 years ago. Its manutacture, however, had untll about thirty years ago been numbered among the lost arts. Is is of a still more recent period thatit has been commonly employed, particularly in Canada.

There is a very general impression among municipal councillors with whom you have to deal that $1 t$ is too expensive. Councils, nevertheless, are outgrowing that idea, and in one part of the province and another I find waterways of six to eight foot span, built of stone, brick and concrete, at a cost of from $\$ 500$ to $\$ 1,000$. The old wooden structures which they replaced may have cost in the first instance only $\$ 50$, but they were perishable, constantly in need of repairs, an impedinent to travel, at times dangerous, and the trend of feeling is towards more permanent and serviceable work.
The limut of span in which concrete can be used is probably quite equal io that of stone arches. This w-ll remain, for the most part, a question of economy in highway work, and its use will show where the steel bridge with concrete abutments steps in. The line is not definitely drawn for all cases, but up to 40 feet the least expensive kind of cement-concrete can be used in arches, and certainly up to that point its use is quite feasible. For the longer spans, arches of the Meian type are being used in the United States and Europethat is, concrete re-enforced by a skeleton of steel

Arches of concrete may be designed by the formulx used proportoning arches of stone masonry. But the determination of the line of resistance and theory of the arch, as applied to stone, cannor be applied to concrete arches. The stone arch is designed on the principle that it will remain in place witheut the use of mortar; while the concrete arch, on the other hand, is a monolith dependent on its cohesive strength points, it appears to me to the necessity of a generous proportion of cement, very great care in mixing the concrete, and the best quality of all materials employed.
My meaning with regard to the proportion of cement can be better understood by glancing over the composition of concrete. A concrete can bes! be regarded as a mixture of mortar and broken stone, the moltar being formed from a mixture

[^0]of sand and cement. Given a sample of broken stone in a vessel, the requisite quantity of water can be gauged by pouring water into the vessel until the stone is submerged The quantity of water used will indicate the amount of mortar required to completely fill the voids in the stone. The proportionate amount of cement needed to fill the voids in the sand can be gauged in the same way. The proportions of cement, sand and broken stone obtained in this manner would provide, with perfect mixing, a mortar of which the voids in the sand are filled with cement, and each particle of sand coated with cement ; it would provide a concrete in which the interstices of the stone are filled with this mortar, and each stone coated with mortar. This would be the case with perfect mixing, and would provide a theoretically perfect concrete. Perfect mixing is not possible, however, and it is necessary to provide an amount of cement
in excess of the voids in the sand, and an amount of mortar in excess of the voids in the store. With proper mixing and good materials, a satisfactory concrete fot bridge abutments can be framed from cement and broken stone in the proportion of one, three and four. But $t 1$ is recognized that the greatest strength in concrete can be obtained by making the mortar rich in cement, rather than lessening the quantity of stone. This applies to crushing strength, however, rather than to the tensile strength required to some extent in the arch. For the arch proper it will be well to use a rich concrete, in say the pro. pottions of one of cement, twe of sand, and three of broken stone. With small arches there will be little economy is changing the proportiens of the abutments.

The cost of the abutments may be less. ened, where they are of sufficient thick. (Continuel on page 8.)

Portland Cements...

HIGH GRADE GERMAN BRANDS FOR GRANOLITHIC and artificial stone sidewalks.
Seyrer Pipes, Best English Cements. Best Belglan Cements.
Culvent Pipes, \&c. W. MGNALLY \& BO., Monifral,

JOSSON CEMENT

Is the Highest Grade Artificial Portland Cement and the Best for High Class Work. Has been used largely for Government and Municipal Works. to be had prom all canadian dealers
C. I. de Sola, wanager in Canada :.: 180 St. James Street, MOMTRBAL

"BEAVER" PORTLAND GEMENT

a mone orade porthand ceazent Manufactured by . TGE BEYYER PORILAKD OEXENT CO., IINITED - HORKS: MARLBAMK, OHT COMMERGIAL WOOD \& CEMENT COMPAKY Canada Lifo Building, Montreal.
Largest Works in Canada.
BELLLPOUSE, DILLLON \& CO., зоSt. Francois Xavicr St, MIOntreal Sole Agents for the Cosmpagnio Goneralo des Asphaltes do France (Rock Asphalt).

THE GEORGIAN BAY PORTLAND CEMENT CO.
 OWEN SOUND, ONT.

These works are furnished with the latest and best machinery. The raw materials are of first-class quality. The process of manufacture is well tried and successfu), and peerated by experienced experts. The product is the finest grade of PORTLAND CEMENT. For further information write
J. YX. MAKMLAND, Sec.-TMeas.

[^1]
[^0]: From a paper read by A. W. Campbel, C. E.,
 Ontario Goox Roads Commissioner, before the Associa: tion of Ontario Land Surveyors.

[^1]: MgGREGOR \& MgINTRYE
 STIRUCTUURXI IRON KYOREXS Trolley Pole Brackets; Electric Light Arms; Prison anul Jail Cells; Firc Escapes; Automatic Fire Slutters and Doors; Iron Sidewalle Doors, dc.

