ments of chips, pebbles or other inert sub. stances as to give hime tho shake, phelifiad tablets which, with time, have lost their potency. Ilis patient has no respect for the preacher.practitioner combination, nor has he any enduring fath in the walking apothecary shop, hence, when he is really seriously ill, he will pay only for the straight article.
"Let tho shoemaker stick to his last" is an old and true saying. If we would stop counter preseribing the pharmacentical trentment of gonorhasiand amenorrheal (?) troubles, then we must give to the honest phammacist what justly belongs to him. Pharmacists, as a class, ate nppreciative, and no physician ever patronized one and was not repaid two.fold. What we have said does not apply to the country practitioner, nor to tho use of cmergency drugs for uight practice.

Sponges-Their Structure and Life History.

From a paper hy Mis. T. S. Wokes before the I'har. Stmilents' Sosiety of liverpool.
It has now been delinitely proved that sponge is an animal, as it contains no collulose, and requires organic food. It is a componad body, and the satrode, or living part of the sponge, appears to the ege as"a soft gelutinous substance, which, howerer, is seen by the mieroscope to consist of an aggregation of simple animals possessing an endodermic, ectoderwic and mesodermic layer. This living portion is supported on a horny skeleton (the commercial sponge) which is composed of asubstance called keratode, spongin, or keratin, chemieally a!lied to silk. Most spong's possess some lind of skeletill structures. They may be calcareous, or silicious, or horny scleres, the latter usually having the form of fibres, which sometimes enclose silicious needles (spicules) or foreign bodies. Woreign bodies sometimes furm pat, and sumetines the whole of the spunge skeletur. The spi cules of calearcous sponges consist of carbonate of calciam. Each spicule, so far is its mineral component is concerned, is a single erystal. On the other hand, its general structure is organic. Its surfaces are curved, and it usually has the form of a cone or a combmation of cones, each of which consisis ut concentric layers of calcite surroundug an anial tibre of orgranic matter. The spicule sheath consists of a thin outer layes of ugatuic mattes, and can be readily seem by romoring the calcite with a weak acid. Spicules may be obtained by cutting sponge into thin slices and soaking it in liguor potassee to dissolve the horny skeleton. Silicious spicules, consist of colloid silica or opal. Spicules diflier greatly in form, size, and use. They may be divided into two groups-minute llesh spicules, supporting a single cell, and larger or skeletal spicules contributing to the formation of skeleton. In sume spenges the shestare simply scattered through the mesoderm, and do not give rise to a continuous skeleton. British sponges contain a lot of silicious
matter. The crater-like openings on the top of opough's are oscule, or explabent apertures, and tho very small holes in the sponge are the pores or inhalent apertures. Tho simplost spongo we know consists of a tlask-shaped body wilh a large internal cavity and one crater-liiso opening at the top. It is covered with pores through which the water is absorb. ed, and ejected from the terminal crater. On dissecting it we find canals rumning through it from the surface to the central eavity. Here and there in these openings we fiad dilatations, each of which is lined with erdls having hairs pointing outwards, called ciliated cham. bers. These are for breathing purposes, by directing the water into currents. The presence of one or more contractile vacuoles in thagellated or ciliated cells sugo gests that they expel water, urea and carbonic acid. Also this current provides food for the sponge in the form of particles of animal and vegetable matter, which are absorbed by the sarcode. The sarcode, or living outer and inner glatinous covering of the sponge skeleton, is possessed of a rudimentry nervous system, which cmables it to close the pores and suspend the process of inhalation and inhibition.

Fresh individuals arise by a sexual germination, by tisson and by true sexual reproduction. In the latter case the new individuals are produced from the union of ova and spermatozoa, which develop from wandering amoboid cells in the mesoderm. 'The little germinule thus formed is a yellowish capsule covered with cilia, and is "jected from the osculi, flouts away from the parent spongeand attaches itself to any suitable neighboring object, is at stone or roch, where it grows. Artilicial tisson has been practised with success in the cultivation of sponges for the market by the Italian Government, but the experiment had to be abandoned on accuant of the hostility of the sponge fislours. Eaperincoits wete alou made in Florida.
-1 description of foreign and Dritish sponges followed, including liuplectella, the beautiful Venus' Flower Basket, and the Chinese ghass rope sponge, which has it long string of glass-like spicules attach. ing the sponge proper to the mud from which it grows. The British sponges are small, and, from a commercial point of view insiguificant, but to the matuatist very interesting. The piancipal aricties are Chalia wenhata, Malichondria ramosa, and the Halichondria panicea, or crumb: of-bread sponge.

Temperance and Health.

In view of the many schemes for tem perance legislation which throng the political horizon, the repert of the Collective Investigation Committee of the British Medical Association, on the subject of "Temperance and Health," possesses a special interest fur us. The committee who undertook this work divided the subjects of their investigation into these classes, i.e., total abstainers, habitually
temperate, carejess drinkers, and tho de: cidedly intemperate. Resultant on therir laturs in this field of researeh, the committee give the following table, illustrative of tho relative longovity of the persons thus classitied:

-I'he lloxpitul.

Solubility of Difficultly Soluble Salts.

A. li. Hollemann contribules in paper on this subject to the Chemiker Zeitumy, from which we extract the following table, in which the last column indicates the parts of water (by weight) necessary to dissolve one part of the salt, and the second colum the temperature centigrade necessiny for the solution:

barimm sulphate	18.9..	429.700
Barima sulphate	3	3:20.000
Strontium sulphat	16.1.	11.000
Strontimus sulph:	$\underline{12}$	10.630
silver chloride	13.s.	715.800)
silver chloride	20.5.	384.100)
Silver bromide.	20.2	. 371.650
sitser bromide	38.t	765.400
Silver iodide	23.1	. $074.44^{\prime \prime}$
Silver iodide	40.4	+20.260
Calcium bicalmato	13.6.	148.920
Cateinm bicarbonate	24.6	124.4(6)
Barimm carbonate	3.S.	(6.) 070
bisium carbomato	24.2..	45.566
strontinum carb:		121.760
Strontima carbonate	. 24.3 .	01.418
Calcinm carmonate..		!3.5\%
(.alcium carbonato		S(0.040

Mayer's Reagent for Volumetric

 Alkaloidal Assay.

Distilled water tul 1 , omo ce
1 ce. of this solution precipitates, $0.0 \div 09 \mathrm{grm}$, ac nitine, 0.0097 grm atropine, 0.00698 grm. hyoscyamine, 0.0189 grom. emetine, 0.01 .25 grm . coniine, 0.00405 nicutine, 0.0167 grm . strychnine, 0.0197 grou. butine, 0.0317 griw. colchicine, 0.02 grom. morphine, 0.0213 grm. narcotine, 0.0296 grm. veratrine, 0.0137 i eserine.

Tomme: and Sramen.-The conpound formed-if there be one formed at allbetween rodane and starch has always been a subject of interest, and one little understood. liouvier his just communicated a paper on the subject to the Au: emie dess Sciences, of which the resultsi. the following. (1.) The weight of stive remaining the same (as do all the other conditions of the experiments), if the quantity of iodine added be gradually increased, the quantity fixed also increases, until a maximum: of 19.6 per cent. is reached. Whatever the amount of iodme used in excess is, no greater quantity than this is taken up by the starch. This corresponds to the fornula $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{19} \mathrm{I}_{5}$. (2.) If weight of iodine and stencic. be kept constant, as also the other conditions, but whane of liguid used increased, the iodine fixed decreased, unless excess of iodine is used, when dilution searcely alters percent ${ }^{\text {. }}$ age (19.6) that is taken up.-Comp. Rend

