nodes and loops in (a) a vibrating string, (b) a vibrating column of air?

- 7. Explain, with diagrams, how you would determine whether a mirror which you cannot touch, but in which you can see objects reflected, be plane, concave, or convex.
- 8. Make drawings to show the action of a convex lens when used (a) as a simple microscope, (b) for projection purposes.
- 9. What is a spectrum? What apparatus do you require, and how would you arrange it, to produce a pure spectrum from a gas flame? Make a diagram showing the path of the rays.

FORM IV.

- 1. (a) Show how to find, graphically or otherwise, the resultant of a number of forces acting at a point.
- (b) Two orces, acting at right angles on a particle, are balanced by a third force making an angle of 120° with one of them. The greater of the two forces being 4 pds., what must be the values of the others?
- 2. A stone, A, is thrown vertically upwards from a high bridge with a velocity of 96 feet per second; find how high it will rise. After 4 seconds from the projection of A another stone, B, is let fall from the same point. How many seconds will elapse before A overtakes B?
- 3. Water is poured into a U tube, the limbs of which are 12 inches long, until they are half full. Oil (Sp. Gr. = 0.9) is then poured into one of the limbs to a depth of 4 inches. As much alcohol (Sp. Gr. = 0.8) as possible is then poured on top of the oil. What length of the tube will the alcohol occupy?
 - 4. A piece of iron (Sp. Gr. = 7.2) is

- covered with wax (Sp. Gr. =0 96) and the whole just floats in water, the weight of the combined mass being 36 grams. Find the weight of the iron and the wax respectively.
- 5. Describe two methods of finding the resistance of a copper wire, explaining the principle of the measuring instrument used in each case.
- 6. (a) Describe any simple voltaic cell, explaining the formation of that which is called the current.
- (b) Describe a series of experiments which show that the E. M. F. of a cell does not depend upon the dimensions of the cell but upon the mater als used in its construction.
- 7. (a) Explain the acoustical phenomenon of interference.
- (b) How would you exhibit this phenomenon by means of an ordinary tuning fork?
- (c) Describe fully another method of exhibiting interference.
- 8. (a) Describe how the air vibrates in an open and in a closed organ pipe.
- (b) An open organ pipe, 2 feet in length, when excited, emits the note C_1 of the diatonic scale. Find the length of a closed organ pipe which will emit the note G_1 of the same scale.
- 9. If the index of refraction for a ray of light passing rom air to glass is \(\frac{3}{2}\) and from air to water \(\frac{4}{3}\), show graphically that the index of refraction for a ray passing from glass to wa er is \(\frac{6}{2}\).
- ro. A convex lens of focal length f is placed at a distance 4f in front of a concave mirror of radius f, and an object is placed half-way between the two. Make a diagram to show the positions of the images formed by refraction through the lens (a) direct-