BEADING TOOLS CONSIDERED.

 м " номо."$l^{*}$$\$$ our desire to excel in the guamtity and quality of the wares we produce, and in our interchange of ideas with our fellow men wha are interested in a kindred business, we are very apt to tearh for someching large and great and entrely ignove the small things, the knowledge and thorounth practice of which are the very fomdation of success. It is ats fuily appreciated in wood-nomking factories ats anywhete thse th.tt one can furmsh a platit of the best and most enpensive kind, but of he neglects to pay close attention to the small details, has large and costly machmery is of no avail. How: many operators have been bothered with lack of litte accersories in the way of supplies, tools and other con reniences, and how many have been cursed with a govilly cupply of poor worthless stuff that is an amoyance and at thing of misery forever! In this comnection we may bring to mind the many kinds of beadme tools that are and have been in use fom time to time, and consider their qualities and objections. Those who have been interested in dressing lumber for any great length of time can remember when alnost all beadin: was done on a separate head for the purpose, ecercrally located near the delisering end of the mathine. The board was ted through, surface on top, matched, and perhaps beaded on top and surfaced on the under side at the same time, or, if not undersurfaced it was beadel hast. Does any one recollect that he could get good, nice beating and rely on having it run so all day? Not to any great extent. He would find that nice straight boards had good beads and aite airshe. The reason is clear. They might be pressed straight under the pressure bars while being planed on top, and when under the beader head dide not get exactly the same pressure, consequenty when the pressure on the board was light the tead was sunk dec, and where the pressure was heave the bead was scant. Another trouble was with boards having a crooked or bowing edge. If they had ever so hate tendency to leave the guide the bead would rum out. It was an uter mpossibility to do nice work with a separate beading atachment from the fact that the promeple was ai wrome. To insure etther first-class beadurg or rustic sidng in connection with onguing and grooving tomust be done with the top phaner head at the time that the top surfiace is being dressed. The uniformaty of depth is then asstired, and it will always have the same relation to the surface. Another point in its fator st that it will be properly related to the celye for the very reason that it is acted on so closely to the matcher cunters that it camot get away from the guide so easily: In fact, if it does, both head and tongue are lefe off, int this is atate ocularence. These facts are so semerally recomized that but few builders will consemt to furmish an independent beader athachment, and if those who do would only go around the country and see them standing idle and the tools placed on the man head, they would quit furnishing supernuities. Naturally. some one asks, what is the best form of beading tool, and l:ow can it be attached to the head in the best man ner? As an answer, 1 illustrate a few of the many ways $: '$ is done in common practice.
${ }^{\mathrm{Fin}} \mathrm{F}$

4 Rone nore
Fgures 1 and $=$ repreacm the tool called a beading slip placed in the cutter head under the planing knite. It is a steel slip about k of an inch wide and it thick, with a semi-circular groove the whole length. It fits in at corresponding slot plancel in the cutcr head. The slot, beiny slightiy shallower than the thickness of the beater, allows the planing knife to hold it down. This 'ool has object:ons ; first, it calls for at blank of the same size to put in the slot when not in use to prevent the chips from divivg in and springing up the planing knife ; second, the chaps drive through the litte semi-circular groove of the knife itself and make trouble; third, you cannot tell where so have your planer head cut out for the tool ana after you have fourd out, along comes some stuin which may be several different widths to be double beadech, and then where are you?
Figure 3 represents a very common form of beading ool that is readily placed on two sides of any liead that possible.
sloted, leaving the other two sides for the sumfacing knives. It is commonly made of steel, slotted, with a
合
small sem-carcle phaned in the to ${ }_{1}$, and beteled on its under side for the purpose of laeeping it sharp with the least possible work, the same grinding betel ahways insuring the same depth of groove. It is simple, easily taken care of, and can be placed on any part of the cutter head. Tlie objection to this form is that when you pull the nut or bolt down on it for the final syucece it turns, just a little bit perhaps, but epngh to make you wish you had something better. You loosen up agrain, perhaps put sandpaper under it and grease the washer on top of it, then try it again ; you stars again, not to wrench it down but to swear through some knot hole where the angels can find no record against you ; you finally get ashamed of yourse fand drink some ice water and drown your feclings and, by exercising what little patience rou possess, get the measly thing set right. If you don't mam to be bothered with these negative blesssinas try beading tools like those shown in Fig. \&.
The cutter itself is the same as Fing. 1 fitted in at steel ap that ias a tongue on its under side att right angles

to the tool. This tongue need not be over i-16 inch thick and just the width of the bolt slot in the eylinder. It is held down by a bott and not in the ordinary manner ; it cannot turn around or get awas; and it holds the knife from driving back because the knife is slighty thicker than the eap and is consequently held by compression. It will stay put and can be monel so as to cut at any part of the board. The objection to this as well as Fig. 3 is that it necessitates the displacerent of two of the surfacing knises while in operation. As a partial answer to this 1 would say that in these days of high speed it does not make so much difference as it would have made at few years ago, and the chances are that not more than two of your knives have been cutting anyway; besides it is not everyone that pretends to make beading or rustic siding as fast as plain hlooring.

This form of beading tool is intended for use in comection with a four-wing cutter tead, allowing the use of all four cutter knives at the same time. As "ill be secn, it is made the proper length and bent to cut the proper depth, fastened by two bolts, the heads of iwhich can be moved in the bolt slot in the throat of the cutter head. Care should be taken to make it thick enough to arevent wibration and give it the propercurve, so that as it wears it can be ground and set out to use as far as
lig. 6 is another form of sutter that can be used
 forty-five hamps 2000 candle power, is 850 revolutions per minute. Now I get very much better results in the matter of light, and as to flashing on the brushes, and as to hissiug in the lamps, by adopting a speed of from 650 to 775 , than by adopting the high rate prescribed in the printed sclicdule. I find better results by having the wall controllers so fastened that they did not aremble. I have had the most trouble with carbons I make a most critical cxamination every day;' keep a record of the carbons used and the sucecss of each kind, and reach the conclusion that any good dynamo, with a fair even speced, will give a most even, when four knives are operated. It is fited with a brilliant light, if good carbons are used.- Piny Nor tongue on tts under side to prevent slipping or turning $\boldsymbol{| c r o s e}$, in Electrical Revica:
around and has a mortise for the cutter and a smat taper key to hold the culter firmly in place. The cutter can be made to cut more or less by loosening the taper key, setting the knife as jou wamt it, and driving the key lome, or it may be held by a set screw pressing against the stde of the cutter. It will be noticed tha: all these cutters are bereled on their under side for the convenience of grimling and because they will produce better results. Thes are a few of the many kinds of cuters used for the purpose and seem to be in the most ommon ase for their convenience, simplicity, and ;encral adaptability.

THE ELECTRIC LIGHT IN AUSTRALIAN MILLS.

Messrs. Itarrison © Co.'s mill, Port Adelaide, is the irst in South dustralia to be lit up at night by electricity: The machine is a dynamo, supplied by the Australian Light Power and Storage Company of Sydney, who have taken a contrar: for lighting the mill. The dynamo used is known as Class Az, Victoria Brush, and is capable of supplying a current for forty Sian lamps of an electromotor force of 53 volts. The current from the marhine is conducted to the lamps in main cables of seven stramis of No. 16 13. W. G. These wires are insulated with : composition so as to ensure thoroagh immunity from connection with angthing likely to damage the cable or make an improper connection. The current is directed straight to the lamps from these main cables by minor eads of No. 18 13. W. G., insulated, and covered with fancy cotton so as to give a neater appearance. To cach of these minor leads is attaclaed a safety-fuse, which con sists of a very fine wire of low fusing point and high conducting activity; so that on any danger arising in the wres from heating this fuse immediately melts, stopping all currents in the leads. Thus is avoided risk of fire To these leads is also attached a switch, so that the lamps can be turned off or on at pleasure. At present there are wenty five laups actually in use in the mill, two of which are in the basement, four on the ground, four on the first, four on the second, and three on the top thoors, two in the smutting and two in the engine-rooms, one in the boiler-shed, and threc in the offices. Tre office lights are mounted on brackets with switches combined, fitted with opal hades. The machine is worked from a countershaft driven of the main shaft with belt gearing diven at a speed of $1, j 00$ revolutions per minute. This class of wachine is the latest improvement from home in incanciescent dynamos. It is Morley's patent, belonging to the Anglo-American Brash Company, and made at their works, London. It is an improvement on the old class of dynamo, as it has compound setting, by means of which 99 per cent of lamps can be turned out without affecting the force of the light of the last one. The cost of working the machine will be purely nominal to Messre Harrison \mathbb{S} Co., because the motive nower, whech is al ready supplied by the mill, is about the most expensive item usually. The renewal of lamps will be ibout once in five or six months. The machine is so simpie that with af few instructions any one can attend it. Aliogether it is expected that the electric light will prove 30 to to per cent cheaper than gas in the mill. In some of the Victorian mines the saving thereby has been as much as $j 0$ per cent. Though this is tie first mill lit by electricity in the colony, several have been lit in the other colonies. The most notable in New Zealand recently is reported in be a marked success. Mr. E. M. Grant, the Engineer for the Lighting Company, is also engaged in putines up an insulation at the Albion Mill, Gawler, which will be lit by electricity by about the midde of next week. The work as Messrs. Harrison \& Co's mill has been rapidly exccuted, it having been commenced only on Monday: It was tried on Widnesday and Thursday nights, and on the first trial every light gave satisfaction. - Sideluide obscrate:

SPEED OF DYNAROS.

The schedule speed of all dynamos from sixteen to

