JOURNAL OF AGRICULTURE

PUBLISHED BY THE DEPARTMENT OF AGRICULTURE FOR THE PROVIYCE OF QUEBEC.

Vol. II.
MONTREAL, DECEMBER 1880.
No. 8

Table of Contents.

Jraining (with engravings). 113
Fine butter and cheese. 115
Heifers, how yonng may they b.eed.. 116
Jersegs, or Guernseys.. 116
Vbtebinary Department-The fcot of the horse 117
Potato discase 118
Phc зphates, dissolved or andissolved. 119
Agricultural chemistry.. 119
England, the decadence of. 124
Canadian vs. European butter 125
Correbpondence. 126
Poultry Department--Poultry in the orchard, p. 127; Coop for raising chickens, p. 126; Digestion. 127
Dstropoing lice 128
OUR FINGERAYNQS.
English cart-horses. 120
Suffolk pigs 121
Poland.China pigs. 123
Chicken coop \&c 126

DEAINING.

In my last article on this subject I went over the theoretical points necessary to be understood by every one before the practice is attacked. We savy that the water entered at the botton of the conduit ; that gravity acted more efficiently in proportion to the height of the column of water already existing in the land ; and that to get rid of the superfluous water by evaporation produced cold instead of heat: in other pords, that, in ur lrained land, the first efforts of the sun in early spring were injurious instead of beneficial.
'lise practioal questions that first meet us are the following: what depth shall we make the drains? what direction shall we give them? and how shall we out them?

As a general rule, increased depih will allow of an increased distance between the drains. But the question really sums itself up in this: I have so much money to spend in draining: how many oubic yards of soil oan I dry for one dollar? For, if the water-level in the land be not lowered to a depth beyond the reach of capillary attraction, the full benefit of drainage vill not be gained, craporation will still exercise its malefic influence. This level we may assume to be reached at $4 \frac{1}{2}$ feet; and, in England, the government Inspectors had strict orders not to siga certifleates for the payment of drainage loans unless they found this depth rigidly adhered to. I knew there is not mach hope of such a depth belog arrived at bere, but I cannot help saying that at a less depth than 33 inokes the work and materials will be as good as thrown away Still, it is a matter for the farmcr's own consideration whether he will pot down a few deep drains or a great many shallow ones, the first will, in the majority of soils in this province, draw well at intervals of 50 feet; but the latter will be probably next to useless at more than 20 feet apart. At any rate, when we have to deal with suoh expensive materials as
pipe-tiles, I should think no sensible man would leave them Fritbin reach of the frost.

Depth of drains.	Distance apart.	in cubic yards.
2 feet.	24 feet.	$3226 \frac{1}{2}$
$3 "$	$32 \frac{1}{2}$	4840
$4 "$	$50 *$	6153

Gencrally, double the depth of drain has effect on about twice the cabical contents of earth, and about half more in estent of surface; but as regards price, at the usual cost of digging drains, do., three times as many oubio yard are dried for one cent by deep drains as are dried for the same amount by shall owones. The exsct figures are 2 ad . yds. at 2 feet deep and 24 feet apart ; 4 cu . yds. at 3 feet and $33 \frac{1}{2}$ feet; and 12 cu .yds. at 4 feet and 50 feet, excluding fractions. I have taken the prices I have myself paid in England, about half what it would cost here.
The direction in which the drains should ran. There is nothing so certaln as the answer to this: up and doma the greatest fall. And I think the following considerations will make this pretty plain. One law of hydraulics known to every one is that water always sceks the lowest level in ell direotions. In fig. 1, let $a b c d$ be a field sloping from $a b$ to $c d$; and let $e f$ be a main drain into whioh the side drains $g h$, $i k, l m, n o, p q$ and $r s$ fall:
Now there is nothing more olear, in the case where drains cross the fall, than that the water that falls at v must have the whole distance to travel from v, jast below the drain $i k$, iu a diagonal line until it arrives at the drain $g h$ (for it cannot run up hill into $j k$) that is, actually farther than the distance between the two drains: the same with the water that falls at w, below the drain $l m$. But take a glance at the other side of the p'an, and look at the drains $n o, p q, r \&$, and it will be evident that the water between each pair of drains has only a little farther to run than halt the distance between the troo drains, in fact where the fall is slight there is a mere triffic of extra journey for it.

Again, if we look at the plan No. 2, where a and b are vertical sections of drains, and the dark line above c a foot of mould. (the plough furrow, in fact) the rain that falls on c will be quickly absorbed, and, seeking the lowest level by gravity, will hasten at first perpendicularly towards the line $d e$: and, in doing so, the portions nearest the drains will find it easier to move towards the open conduits d and e than towards the firm ground at h : moving thas there will always a higher level of water ai h, and the accumulation there will cause a strong lateral pressure on eaoh side towards d and c; and the greater the accumalation the stronger will the pressure. Some people imagine that water finds its way into the drains as it does from the ridge of a house into tha rones or shoots; but they are those who have never given themgelves the tronble to think about the matter. Another reason why drains should run in the line of the greatest fall is, that almost invariably the sabstrata lia horizontally. Now look.

