YOUNG: Forms, Necessary and Sufficient, of the Roots of

in (112), zero included, which make $w^{g\sigma+1}$ a primitive n^{th} root of unity. Let two of these values of g be g_1 and g_2 . Put

 $g_1 \sigma + 1 = q_1 s + r_1$ $g_2 \sigma + 1 = q_2 s + r_3,$

 q_1 and q_2 being whole numbers, and r_1 and r_2 whole numbers less than s. Suppose, if possible, that $r_1 = r_2$; then

$$(g_1 - g_2)\sigma = (q_1 - q_2)s$$

which, as above, makes σ a multiple of s, and is therefore impossible. Consequently, the s-1 residues after multiples of s have been rejected from the s-1 different values of $g\sigma + 1$ are all different from one another.

§53. It can now be shown that equations

and

and

 $\begin{array}{c} (R_{mz}R_m^{-z})^{\frac{1}{4}} = p_m \\ (R_{emz}R_{em}^{-z})^{\frac{1}{4}} = p_{em} \end{array}$ (114)

subsist for every integral value of z and every value of e that makes w^{e} a primitive n^{th} root of unity, p_{m} being a rational function of w^{m} , and p_{em} being what p_{m} becomes when w is changed into w^{e} . By (3) and (5), because R_{1} is the fundamental element of the root of a pure uni-serial Abelian equation of the n^{th} degree,

$$(R_{mz}R_m^{-z})^* = k_1,$$

$$(R_{emz}R_{em}^{-z})^{\frac{1}{n}} = k_e,$$

 k_1 being a rational function of w, and k_e being what k_1 becomes when w is changed into w^e . Therefore

and
$$(R_{mz}R_m^{-z})^{\frac{1}{4}} = k_1^m \\ (R_{emz}R_{em}^{-z})^{\frac{1}{4}} = k_e^m \}$$
 (115)

In the second of these equations, give e a value, say c, falling under the form (112). Then $(R_{cms}R_{cm}^{-s})^{\frac{1}{2}} = k_c^m$. (116).

Since σ is a multiple of 4, we may put c = 4d + 1. Therefore cm = dn + m. Therefore $w^{cm} = w^m$, and $w^{cmz} = w^{mz}$. Therefore (116) may be written

$$(R_{mz}R_m^{-z})^{\frac{1}{4}} = k_c^m$$

This, compared with the first of equations (115), gives us

$$k_c^m = k_1^m. \tag{117}$$

Since k_1^m is a rational function of a primitive n^{th} root of unity, and the first of the cycles (101) contains all the primitive s^{th} roots of unity, we may put

$$k_1^m = a_0 + a_1 w^{\sigma} + a_2 w^{\sigma\lambda} + \dots + a_{s-1} w^{\sigma\lambda^{s-2}}, \tag{118}$$

266

and