ANSWERS.

W. MoD. (a) The torm Scythia, as used in aucient times, donoted a vast and undefined territory lying on the north and east of the Black Sea, tho Caspian Soa, and the Sea of Aral. The word as now used does not donoto so much a tract of country as a catalogue of tribes and nations.

Alpisa. (a) You can either send direct to publishors or order through ang local booksellor. We do not know the price.
(b) Perhaps some scienco teacher will kindly answer your question.
2,73440
$2: 36720$
$2, \overline{18360}$
2,9180
2,4590
312295
$\begin{array}{r}31-765 \\ 31-255 \\ 51 \quad 85 \\ \hline 17\end{array}$
Answer to Question (c) by "Ignoramus" in last issue of theJoutinal, by Charles Richmond, aged 9, of Parry Sound school. The headmaster informs us that the question was given to a class of twenty in Junior 3rd Class, all of whom solved it without assistance.

$$
\begin{aligned}
73440 & =2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 2 \times 5 \times 17 \\
& =3 \times 5 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 2 \times 17 \\
& =15 \times 16 \times 17 \times 18
\end{aligned}
$$

Solutions to Problems in No. 23, by T. C. Doidge: -
(a) Prime factors of $1800=2,2,2,3,3,5,5$.

Since wo have the 3 rd power of 2 as a divisor, 1, 2, 4, 8 are divisors of 1800 .
Also $1,3,9$. The product of each factor of $1,2,4,8$ and of $1,3,9$ gives numbers that are divisors of 1800 , thus:
$1,2,4,8$
1, 3, 0 ,
$1,2,4,8,3,6,12,24,9,18,36,72$. As there is the second power of five, 5 and 25 are divisors; also the product of these divisors with cach of the divisurs just found, thus:
$1,2,4,8,3,6,12,24,9,18,36,72$
1, 5,25
$1,2,4,8,8,6,12,24,9,18,36,72,5,10,20,40,15,30,60$. $120,45,90,180,360,25,50,100,200,75,150,300,600,225,450$, $900,1500=36$ divisors.
${ }_{9^{3}}^{4 \times 3 \times 3} \times \mathbf{3}^{2} \times 36$ divisors. (By increasing cach inder 1 anì multiplying.)
$\frac{12}{7 \times 13}+\frac{6}{7 \times 11} \div \frac{3}{11 \times 13}=\frac{132+78+63}{7 \times 13 \times 11}=\frac{273}{7 \times 13 \times 11}=\frac{3}{11}=.272727 \div$
The decimal to be added must consist of three figures, and when added must mako the result greater than 1.

		728
	1-.272=.728 or	1000
$\begin{aligned} & 27272+ \\ & .728 \end{aligned}$		Ansucer.

$1.00072 \ldots$
(c) $\frac{1}{5}=.2$
$\frac{1}{5^{2}}=\frac{1}{25}$ of $.2=.008$.
$\frac{1}{3}$ of $\frac{1}{5^{2}}=\frac{1}{3}$ of $.008=.002066606 \ldots$
${ }_{-1}^{1}=\frac{1}{25}$ of $.008=.00032$
$\frac{1}{\overline{5}}$. of $\frac{1}{\overline{5}} 5=\frac{1}{5}$ of $.00032=.000064$
${ }_{5}^{1}=\frac{1}{50}$ of $.00032=.0000128$
$\frac{1}{7}$ of $\frac{1}{5^{7}}$ of, $0000128=.00000182857 \ldots$
$\{$ Valuo of exprassion insido nई brackets $=.2-.026+.000064$
$-.0000182857 \ldots\}=(.19 i 3955 i 14) \times 16-\frac{4}{239}=3.158320142 \ldots$
$-0167364 . .=3.141592+$. Ausicer.
(d) 125

100
225
500 bble'. © $\$ 7=\$ 3,500$, less 4% or $\$ 140=\$ 3,360$ to be divided.
Every bll. of A 's is worth $1,{ }_{1}^{1} \sigma$ of $B ' s \therefore$

A's 125 bbls. is worth as much as $137 \frac{1}{2}$ bbls. of B 's.
C": 巳25 " $\quad 1 \quad \| \quad 261 \quad 11 \quad 1$
The money is divided into the ratio of $137 \frac{1}{2}, 150$, and 261.

$$
\left.\begin{array}{rrr}
A & \text { receives } & 842.30 \\
B & " 1 & 918.87 \\
C & " & 1,598.83
\end{array}\right\} \text { inswer. }
$$

(c) The prise factors of 73440 are $2,2,2,2,2,3,3,3,5,17$.

First by inspection.
5 is une of the cunsecutive numbers, or $10,15,20,25,30,35$, dc.
17 "" " $34,68,8 \overline{0}, 102$, $\mathcal{1}$ "
5 and 17, or any multiple 6 17, can not be two of the consecutive numbers.
10 and 17 , or any multiple of 17 , can not be two of the numbers.
15 and 17 may be two of the numbers; also 17 and 20 , and it can be easily seen that no other multiples of $\overline{5}$ and 17 can be two of the numbers. Therefore the numbers are between 17 and 20 inclusive. As 19 is not one of the factors, the only numbers remaining, viz.: 15, 16, 17, 18, which are made up of the prime factors, aro the four consecutive.
Second method. - Find all the divisors and arrange according to order of magnitude, thus: $1,2,3,4,5,6,8,9,10,12,1 \overline{5}, 16,1 \overline{7}, 18$, $20,24,30,30,40$, $\mathbb{C c}$. It will be seen that there are only four consecutive numbers, vi\%: $15,16,17,18$, that are divisors of 73410 , and are consequently the four consecutive factors.
T. C. Doldee.

The following are my solutions to questions in your issue of November 15th, 1886:
I fancy "Quaker's" (b) is misprinted. If you allow A to hovo S1.25, and C S1.44. Then let per cent. that P has more than 4 bex. Then let $125 \times 100 \frac{+x}{100} \times \frac{100+x}{100}=144$. Let $\frac{100+x}{100}$ be y.
Then let $y^{2}=\frac{144}{125}$ or $y=\frac{12}{\overline{5}} \frac{12}{\sqrt{5}}$.
Then let $\frac{100+x}{100}=\frac{12}{5 \sqrt{5}} \therefore x=7 \cdot 334 \overline{5}$. $\$ 1.25$ and $7 \cdot 334 \overline{5}$ per cent. of itself $=\$ 1.34 \div=B \prime s$ share.
.. Sum divided $=(\$ 1.25+\$ 1.34+\$ 1.44)=\$ 4.03+$.
(c). At last payment, if he had spent f of the moncy he had, he would have had ($\$ 33^{2} \mathrm{H}-50 \mathrm{c}$. $)=\$ 32 \mathrm{~F}$ leit.
\therefore S32 $=$ an of money then.
$\leqslant 48_{n}^{\circ}=$ money then.
Similarly in second payment: $\$ 48 \pm-50 \mathrm{c} .=548\}=\frac{1}{3}$ of money then. $\leqslant 72 t=$ moncy then.
Also in firsi payment: Sjot - $\overline{0} 0 \mathrm{c} .=\mathrm{S}_{1} \underset{\sim}{2}=\overline{3}$ of muney then.
$\therefore \$ 10 \mathrm{~s}=$ monoy at first.
I think "Subscriber's" 1. is misprinted also. If you divide the fraction $\frac{17}{4}$ into two such parts that 4 times one of them added to $\overline{\mathrm{E}} \mathrm{t}$ times tho other may make 4 fiep then 4 times lst part $+\overline{5} \frac{1}{2}$ times 2nd part $=4$ times lst part +4 times end part $+1 \frac{1}{4}$ times 2nd part $=4$ times both parts $+\frac{1}{3}$ times 2nd part, $\frac{1}{7} \times 5 \times{ }_{8} \times$

Ans. to No. 2 of Subscribers :-
if $(A+B)=C \div D$, 活 $(-1+C)=B+D, \frac{n}{*}(B+C)=A+D$. From these we get

$504+50 B$	$=$	SlC+3LD
56.40566	$={ }^{75}$	$+85$
$65 B+65 C$	$=66.4$	$+60 D$
$106 A+115 B+121 C$	$=66 A+5$	$\mp 81 C+221$ D
$40(-1+13+6)$	$=222 \mathrm{~J}$	1-2. ${ }^{\text {d }}$
D	$=\sin (A+$	C)

