ANSWERS.	(d) 125
W. MoD. (a) The torm Scythia, as used in aucient times,	150 225
denoted a vast and undefined territory lying on the north and east	500 bbls. @ \$7 = \$3,500, less 4%, or \$140 = \$3,360 to be
of the Black Sea, the Caspian Sea, and the Sea of Aral. The word as now used does not denote so much a tract of country as a cata-	divided.
logue of tribes and nations.	Every bbl. of A's is worth 1_{10}^{10} of B's \therefore " " C's " $\frac{5}{35}$ of $\frac{1}{10}$ of B's, or $\frac{5}{25}$ of B's.
ALPHA. (a) You can either send direct to publishers or order	A's 125 bbls. is worth as much as $137\frac{1}{2}$ bbls. of B's.
through any local booksellor. We do not know the price. (b) Perhaps some science teacher will kindly answer your	<i>C's</i> 225 a a a 261 a a
question.	The money is divided into the ratio of 1371, 150, and 261.
2,73440	$\begin{array}{ccc} A \text{ receives \$ 842.30} \\ B & n & 918.87 \end{array}$
2,36720 Answer to Question (c) by "Ignoramus" in last issue	\overline{C} " 1,598.83
2,18360 of the JOURNAL, by Charles Richmond, aged 9, of Parry	(c) The prime factors of 73440 are 2, 2, 2, 2, 2, 3, 3, 3, 5, 17.
$2i \overline{9180}$ Sound school. The headmaster informs us that the question was given to a class of twenty in Junior	First by inspection. 5 is one of the consecutive numbers, or 10, 15, 20, 25, 30, 35, &c.
2, 4590 3rd Class, all of whom solved it without assistance.	17 11 12 34, 68, 85, 102, &c. 5 and 17, or any multiple of 17, can not be two of the consecu-
$3 2295 = 73440 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 17$	5 and 17, or any multiple of 17, can not be two of the consecu- tive numbers.
$=3\times5\times2\times2\times2\times3\times3\times2\times17$	10 and 17, or any multiple of 17, can not be two of the numbers
$3 _{205} = 15 \times 16 \times 17 \times 18$ $5 _{85}$	15 and 17 may be two of the numbers; also 17 and 20, and it.
17	can be easily seen that no other multiples of 5 and 17 can be two of the numbers. Therefore the numbers are between 17 and 20 in-
Solutions to Problems in No. 23, by T. C. Doidge: -	clusive. As 19 is not one of the factors, the only numbers remaining.
(a) Prime factors of $1800=2,2,2,3,3,5,5$.	viz.: 15, 16, 17, 18, which are made up of the prime factors, are the four consecutive.
Since we have the 3rd power of 2 as a divisor, 1, 2, 4, 8 are divi-	Second method Find all the divisors and arrange according to
sors of 1800. Also 1, 3, 9. The product of each factor of 1, 2, 4, 8 and of	order of magnitude, thus: 1, 2, 3, 4, 5, 6, 8, 0, 10, 12, 15, 16, 17, 18, 20, 24, 30, 36, 40, &c. It will be seen that there are only four con-
1, 3, 9 gives numbers that are divisors of 1800, thus:	secutive numbers, viz.: 15, 16, 17, 18, that are divisors of 73440.
1, 2, 4, 8 1, 3, 9,	and are consequently the four consecutive factors. T. C. DOIDGE.
1, 2, 4, 8, 3, 6, 12, 24, 9, 18, 36, 72. As there is the second power	1. 0. Donge.
of five, 5 and 25 are divisors; also the product of these divisors	The following are my solutions to questions in your issue of
with each of the divisors just found, thus: 1, 2, 4, 8, 3, 6, 12, 24, 9, 18, 36, 72	November 15th, 1886:
1, 2, 4, 8, 3, 6, 12, 24, 9, 18, 36, 72 1, 5, 25	I fancy "Quaker's" (b) is misprinted. If you allow A to have
1, 2, 4, 8, 8, 6, 12, 24, 9, 18, 36, 72, 5, 10, 20, 40, 15, 30, 60,	\$1.25, and C \$1.44. Then let per cent. that B has more than A be x. 100 + x = 100 + x. 100 + x = 100 + x.
120, 45, 90, 180, 360, 25, 50, 100, 200, 75, 150, 300, 600, 225 , 450, 900, 1900 = 36 divisors.	Then let $125 \times \frac{100 + x}{100} \times \frac{100 + x}{100} = 144$. Let $\frac{100 + x}{100}$ be y.
$4 \times 3 \times 3$ $2^3 \times 3^3 \times 5^2 = 36$ divisors. (By increasing each index 1 and multi-	Then let $y^2 = \frac{144}{125}$ or $y = \frac{12}{5} \frac{12}{\sqrt{5}}$.
plying.)	
(b)	Then let $\frac{100 + x}{100} = \frac{12}{5\sqrt{5}}$: $x = 7.3345$. \$1.25 and 7.3345 per
$\frac{12}{7\times13} + \frac{6}{7\times11} + \frac{9}{11\times13} = \frac{132+78+63}{7\times13\times11} = \frac{273}{7\times13\times11} = \frac{3}{11} = .272727 + $	cent. of itself = $\$1.34 + = B$'s share.
The decimal to be added must consist of three figures, and when	Sum divided = (\$1.25 + \$1.34 + \$1.44) = \$4.03 +.
added must make the result greater than 1.	(c). At last payment, if he had spent } of the money he had, he
$1272 = .728$ or $\frac{728}{1000}$	would have had $(\$33, 4 - 50c) = \323 left.
1212=.120 or $100027272 + Austreer.$	325 = 3 of money then. $$48_{6}^{\circ} = \text{money then.}$
.728	Similarly in second payment : $$48\frac{1}{2} - 50c. = $48\frac{1}{2} = \frac{2}{3}$ of money then.
1.00072	$\$72\frac{1}{2}$ = money then.
(c) $\frac{1}{5} = .2$	Also in first payment : $572\frac{1}{2} - 50c. = 512 = \frac{2}{3}$ of money then.
	\therefore \$10\$ = monoy at first.
$\frac{1}{5^3} = \frac{1}{25}$ of .2=.008.	I think "Subscriber's" 1. is misprinted also. If you divide the
$\frac{1}{3}$ of $\frac{1}{5^3} = \frac{1}{3}$ of .008=.0026666666	Fraction 45 into two such parts that 4 times one of them added to
	$\overline{c}_{\frac{1}{2}}$ times the other may make $4\frac{692}{691}$; then 4 times 1st part + $\overline{c}_{\frac{1}{2}}$ times 2nd part = 4 times 1st part + 4 times 2nd part + 14 times
$\frac{1}{5} = \frac{1}{25}$ of .008 = .00032	2nd part = 4 times both parts + 14 times 2nd part, $\frac{14}{14} \times \frac{1}{14} = 34$
$\frac{1}{5}$ of $\frac{1}{5^3} = \frac{1}{5}$ of .00032 = .000064	= 4 times both parts. $\therefore 4492 - 35 = 831 = 14$ times 2nd part. $\therefore \frac{1}{5} \times \frac{1}{5}\frac{1}{5} = \frac{1}{5}\frac{1}{5}\frac{1}{5} = 2nd$ part, and $\frac{1}{5} - \frac{1}{5}\frac{1}{5}\frac{1}{5} = \frac{1}{5}\frac{1}{5}\frac{1}{5}$ = 1st part.
	Ans. to No. 2 of Subscribers :—
$\frac{1}{5^7} = \frac{1}{25}$ of .00032 = .0000128	
$\frac{1}{7}$ of $\frac{1}{5^7}$ of $.0000128 = .00000182857 \dots$	these we get
	50 A + 50 B = 51 C + 51 D 56 A + 56 C = 75 B + 75 D
Value of expression inside of brackets = .2026+.000064	65 B + 65 C = 66 A + 66 D
$0000182857\ldots$ = $(.1973955714) \times 16 - \frac{4}{239} = 3.158329142\ldots$	Sum = 106 A + 115 B + 121 C = 66 A + 75B + 81C + 221 D
- 0167364 =3.141592+. Answer.	40 (A + B + C) = 222 D D = 137 (A + B + C).
	· · · · · · · · · · · · · · · · · · ·

=

,