WESTERN CLARION

Allielan

On a Piece of Chalk

By THOMAS HENRY HUXLEY

(Continued from last issue)

There is more curious evidence, again, that the process of covering up, or, in other words, the deposit of Globigerina skeletons, did not go on very fast. It is demonstrable that an animal of the cretaceous sea might die, that its skeleton might lie uncovered upon the sea-bottom long enough to lose all its outward coverings and appendages by putrefaction, and that, after this had happened, another animal might attach itself to the dead and naked skeleton, might grow to maturity, and might itself die before the calcareous mud had buried the whole.

Cases of this kind are admirably described by Sir Charles Lyell. He speaks of the frequency with which geologists find in the chalk a fossilized seaurchin to which is attached the lower valve of a Crania. This is a kind of shell-fish, with a shell composed of two pieces, of which, as in the oyster, one is fixed and the other free.

"The upper valve is almost invariably wanting, though occasionally found in a perfect state of preservation in the white chalk at some distance. In this case, we see clearly that the sea-urchin first lived from youth to age, then died and lost its spines, which were carried away. Then the young **Grania** adhered to the bared shell, grew and perished in its turn; after which, the upper valve was separated from the lower, before the Echinus became enveloped in chalky mud."

A specimen in the Museum of Practical Geology, in London, still further prolongs the period which must have elapsed between the death of the seavrchin and its burial by the **Globigerinae**. For the outward face of the valve of a **Crania**, which is attached to a sea-urchin (**Micraster**), is itself overrun by an incrusting coralline, which spreads thence over more or less of the surface of the sea-urchin. It follows that, after the upper valve of the **Crania** fell off, the surface of the attached valve must have remained exposed long enough to allow of the growth of the whole coralline, since corallines do not live embedded in mud.

The progress of knowledge may, one day, enable us to deduce from such facts as these the maximum rate at which the chalk can have accumulated, and thus to arrive at the minimum duration of the chalk period. Suppose that the valve of the Crania upon which a coralline has fixed itself in the way just described, is so attached to the sea-urchin that no part of it is more than an inch above the face upon which the sea-urchin rests. Then, as the coralline could not have fixed itself, if the Crania had been covered up with chalk mud, and could not have lived had itself been so covered, it follows that an inch of chalk mud could not have accumulated within the time between the death and decay of the soft parts of the sea-urchin and the growth of the coralline to the full size which it has attained. If the decay of the soft parts of the sea-urchin, the attachment, growth to maturity, and decay of the Crania, and the subsequent attachment and growth of the coralline, took a year (which is a low estimate enough), the accumulation of the inch of chalk must have taken more than a year; and the deposit of a thousand feet of chalk must, consequently, have taken more than twelve thousand years.

long period, though we may not be prepared to give a precise estimate of the length of that period in years. The relative duration is clear, though the absolute duration may not be definable. The attempt to affix any precise date to the period at which the chalk sea began, or ended, its existence is baffled by difficulties of the same kind. But the relative age of the cretaceous epoch may be determined with as great ease and certainty as the long duration of that epoch.

You, will have heard of the interesting discoveries recently made in various parts of Western Europe of flint implements, obviously worked into shape by human hands, under circumstances which show conclusively that man is a very ancient denizen of these regions.

It has been proved that the old populations of Europe, whose existence has been revealed to us in this way, consisted of savages, such as the Esquimaux are now; that, in the country which is now France, they hunted the reindeer, and were familiar with the ways of the mammoth and the bison. The physical geography of France was in those days different from what it is now—the river Somme, for instance, having cut its bed a hundred feet deeper between that time and this; and it is probable that the climate was more like that of Canada or Siberia that that of Western Europe.

The existence of these people is forgotten even in the traditions of the oldest historical nations. The name and fame of them had utterly vanished until a few years back; and the amount of physical change which has been effected since their day renders it more than probable that, venerable as are some of the historical nations, the workers of the chipped flints of Hoxne or of Amiens are to them, as they are to us, in point of antiquity.

But, if we assign to these hoar relics of longvanished generations of men the greatest age that can possibly be claimed for them, they are not older than the drift, or boulder clay, which, in comparison with the chalk, is but a very juvenile deposit. You need go no farther than your own sea-board for evidence of this fact. At one of the most charming-spots on the coast of Norfolk, Cromer, you will see the boulder clay forming a vast mass, which lies upon the chalk and must consequently have come into existence after it. Huge boulders of chalk are, in fact, included in the clay, and have evidently been brought to the position they now occupy, by the same agency as that which has planted blocks of syenite from Norway side by side with them.

The chalk, then, is certainly older than the boulder clay. If you ask how much, I will again take you no farther than the same spot upon your own coasts for evidence. I have spoken of the boulder clay and drift as resting upon the chalk. That is not strictly true. Interposed between the chalk and the drift is a comparatively insignificant layer containing vegetable matter. But that layer tells a wonderful history. It is full of stumps of trees,

bones did veritably carry their owners about, and these great grinders erunch, in the dark woods of which the forest-bed is now the only trace, it is impossible not to feel that they are as good evidence of the lapse of time as the annual rings of the treestumps.

Thus there is a writing upon the walls of cliffs at Cromer, and whoso runs may read it. It tells us, with an authority which cannot be impeached, that the ancient sea-bed of the chalk sea was raised up, and remained dry land, until it was covered with forest, stocked with the great game whose spoils have rejoiced your geologists. How long it remained in that condition cannot be said, but "the whirligig of time brought its revenges" in those days as in these. That dry land, with the bones and teeth of generations of long-lived elephants, hidden away among the gnarled roots and dry leaves of its ancient trees, sank gradually to the bottom of the icy sea, which covered it with huge masses of drift and boulder clay. Sea-beasts, such as the walrus, now restricted to the extreme north, paddled about where birds had twittered among the topmost twigs of the fir trees. How long this state of things endured we know not, but at length it came to an end. The upheaved glacial mud hardened into the soil of modern Norfolk. Forests grew once more, the wolf and the beaver replaced the reindeer and the elephant, and at length what we call the history of England dawned.

Thus you have, within the limits of your own county, proof that the chalk can justly claim a very much greater antiquity than even the oldest physical traces of mankind. But we may go further and demonstrate, by evidence of the same authority as that which testifies to the evistence of the father of men, that the chalk is vastly older than Adam himself.

The Book of Genesis informs us that Adam, immediately upon his creation, and before the appearance of Eve, was placed in the Garden of Eden. The problem of the geographical position of Eden has greatly vexed the spirits of the learned in such matters, but there is one point respecting which, so far as I know, no commentator has ever raised a doubt. This is, that of the four rivers which are said to run out of it, Euphrates and Hiddekel are identical with the rivers now known by the names of Euphrates and Tigris.

But the whole country in which these mighty rivers take their origin, and through which they run, is composed of rocks which are either of the same age as the chalk or of later date. So that the chalk must not only have been formed, but, after its formation, the time required for the deposit of these later rocks and for their upheaval into dry land must have elapsed before the smallest brook which feeds the swift stream of "the great river, the river of Babylon," began to flow.

Thus, evidence which cannot be rebutted, and which need not be strengthened, though if time per mitted I might indefinitely increase its quantity, compels you to believe that the earth, from the time of the chalk to the present day, has been the theatre of a series of changes as vast in their amount as they were slow in their progress. The area on which we stand has been first sea and then land,

The foundation of all this calculation is of course, a knowledge of the length of time the **Crania** and the coralline needed to attain their full size; and, on this head, precise knowledge is at present wanting. But there are circumstances which tend to show that nothing like an inch of chalk has accumulated during the life of a **Crania**; and, on any probable estimate of the length of that life, the chalk period must have had a much longer duration than that thus roughly assigned to it.

Thus, not only is it certain that the chalk is the mud of an ancient sea-bottom, but it is no less certain that the chalk sea existed during an extremely standing as they grew. Fir trees are there with their cones, and hazel-bushes with their nuts; there stand the stools of oak and yew trees, breeches and alders. Hence this stratum is appropriately called the "forest-bed."

It is obvious that the chalk must have been upheaved and converted into dry land before the timber trees could grow upon it. As the bolls of some of these trees are from two to three feet in diameter, it is no less clear that the dry land thus formed remained in the same conditions for long ages. And not only do the remains of stately oaks and wellgrown firs testify to the duration of this condition of things, but additional evidence to the same effect is afforded by the abundant remains of elephants, rhinoceroses, hippopotamuses, and other great wild beasts, which it has yielded to the zealous search of such men as the Rev. Gunn.

When you look at such a collection as he has formed, and bethink you that these elephantine

for at least four alternations; and has remained in each of these conditions for a period of great length

Nor have these wonderful metamorphoses of sea into land, and of land into sea, been confined to one corner of England. During the chalk period, or "cretaceous epoch," not one of the present great physical features of the globe was in existence. Our great mountain ranges, Pyrenees, Alps, Himalayas, Andes, have all been upheaved since the chalk was deposited, and the cretaceous sea flowed over the sites of Sinai and Ararat.

(To be concluded)

lane.

8

WINNIPEG, MAN.

Local Winnipeg, Manitoba. Secretary J. M. Sanderson, P. O. Box 2354, Winnipeg, Man.

Business meeting ever yWednesday at 8 p.m. Economics Class every Monday at 8 p.m. Correspondence invited. When visiting Winnipeg visit the Local Headquarters at 530 Main Street.