THE
 Railway and Shipping World

With which is incorporated The Western World. Eistablished 1890.
Devoted to Steam \& Electric Railway, Shipping, Express, Telegraph \& Telephone Interests.

Old Series, No. 97. New Series, No. ${ }^{15}$.	TORONTO, CANADA, MAY, 1899.	Io Cents a Copy.
\$i A Year.		

Crow's Nest Pass Railway Location \& Construction.

By J. L. Davidson.

The construction of the Crow's Nest Ry. Was notable, from an engineering standpoint, or at least two features, the celerity of consruction \& the skill shown in overcoming serious obstacles. To build a road through the Rocky Mountains, with a maximum grade of 1%, seems well-nigh impossible, yet this bes not been exceeded, \& the railway is the est which crosses the mountains.
Location was commenced in April, 1897, at Lethbridge, Alberta, \&, since preliminwas lines had been run in 1892-3, there to a good idea as to the general route bride followed. Starting from Lethbridge, it ran to Fort MacLeod, thence to Pincher Creek, following the middle of the Old Man River to the summi Of the Rocky Mountains, down Michel Creek to Elk River, thence to Koote nay River, to Cranbrook \& to Moyie Rive, along Moyie Lake, down Moyie Goar to Goat River Summit, down the River to Kootenay Flats, round Ne west side of Kootenay Lake to the Narrows, \& down the Narrows to Nel ${ }^{2}$; in all, a distance of 290 miles.
different brident bases; westward from Lethbridge, starting in April; westward stam Elk River to Kootenay River, tarting in May; westward from Ward River Moyie Lake in May ; down Moyie Giver from the foot of Moyie Lake to Goat River Summit, starting in July; Flats ine summit westward to Kootenay Flats in Nov., \& from Kootenay Flats All the the lake to Nelson in April, 1898. Mare location proper was finished in re-larch, 1898 , although a good deal of re-location was going on during conO_{n} ion.
/2 mileaving Lethbridge it is about a is mile to St. Mary's River, where there fy about 3 miles of trestle-work. A hill to was run down along the side hill to the flats, so that the steam pileA_{8} abers could be working below, as well the above. Three tracks were run along trestlurse of the road, 1 outside of the pile-drivork, \& 2 inside. The steam piles, driver, driving the outside sloping the uprime first, followed by the one driving 2 flat upright piles. The ist pile-driver was on from cars, I on each track, \& was shifted ${ }^{T} \mathrm{~W}_{\text {m }}$ side to side as the piles were driven. at the the upright piles the driving was done dive rear end of the cars, as the piles were kime in between the tracks. In the meantrae, material was brought along on the it in outside, a steam timber derrick putting Were place for the pile-driver. Pile-drivers the brid work up above from the east end of tructge. In this way the trestle was conporary in remarkably quick time. Temborary work was constructed under the span means of decks, the decks being brought
along already made up. One deck was laid on top of another till the necessary height was reached; the span was then placed in position, \& the temporary work taken away.

The line crosses the valley, swings around a 10° curve on the trestle, \& follows along the coulees. Very heavy cuts are encountered here ; one, after the slopes being taken out, was 120,000 cubic yards. A trestle, 900 ft . long, is next, with a 200 ft . span. Heavy cuts again intervene, \& 6-mile coulee bridge is reached. Piles were driven to a height of $40 \mathrm{ft} .$, \& then decks of 15 ft . were strung across on the temporary work, \& pulled up into position. A cable was stretched across

John Foy,
Manager Niagara Navigation Company.
the coulee, block \& pulley were attached to the cable, $\&$ the bents placed in position one by one. It was impossible to locate around the hogs backs that jutted out from the side hill, so that it was necessary to have trestles \& heavy cuts.

Eight-mile coulee trestle is next reached; this is 600 ft . long \& 110 ft . high. The piles were driven to a height of 50 ft . There is a $15-\mathrm{ft}$. deck \& bents up to grade here. After passing through a very heavy cut, a trestle 900 ft . long on a 3° curve was constructed in the same manner as the one above mentioned. Heavy cuts \& fills with a few small trestles were encountered till 16 -mile coulee trestle
was reached. This is 800 ft . long \& 133 ft . high, with 200 ft . span. The temporary work consisted of 3 decks for the span, 35 ft . each, the bents being 15 ft . apart.
The line now comes out on the rolling prairie, \& no difficulty is encountered to MacLeod, 37 miles. The road then follows up the Old Man River, \& crosses Pincher Creek, 22 miles distant, with a trestle $1,200 \mathrm{ft}$. long \& 122 ft . high, with a span 250 ft . long. It then follows the south side of Old Man River, with a rising grade, till the south fork of Old Man River is crossed. This bridge is 840 ft . long, \& 135 ft . high, 2 spans of 150 ft . each, piles 30 ft . \& decks of 15 ft . bents; temporary work for spans, 15 ft . bents 15 ft . apart for 70 ft . in height, then 30 ft . deck to span. The road then winds in and out along the south bank of the Old Man River, \& the foot-hills of the Rockies are soon reached. Heavy rock cuts are encountered now, A trestle was erected on a 4° curve over a dam, but the whole side hill, $1,200 \mathrm{ft}$. across, started to move toward the river; the trestle had to be abandoned, a lower grade taken, \& a fill was made instead of trestling. It was necessary to keep ballasting this, as the grade kept sinking. The cause of this, from all appearances, is that there is loose material embedded in the hollow, the sides \& bottom of which are solid rock.
The entrance of the pass is made at 92 miles. In the mountain division trestling \& culverts are of the greatest importance, as they are used in very great numbers. The trestles consist of single deck trestles up to 40 ft .; on soft material piles are used \& on hard ground mud sills are used. The standard trestles run up to 110 ft ., with diagonal bracing on all over 2 decks. The culverts employed are box, pile \& open ; box culverts are the most used culverts in a mountainous country, \& on this road are used in great numbers. Where there is a fill in a drain a culvert was put in, unless the water could be drained along the side of the dump. If there is a small stream the size is generally $3 \times 3 \mathrm{ft}$. Box culverts vary in size from $2-4 \mathrm{ft}$. in width, \& from $2-5 \mathrm{ft}$. high. Sometimes it was necessary to put in a double box culvert; these are generally $4 \times 4 \mathrm{ft}$. Some of these on this road are over 100 ft . long. Open culverts are generally pile culverts, \& are from 6-14 ft. in width. Mud sills used on hard ground. Open culverts are used up to a height of 5 ft . for spans of $12-14 \mathrm{ft}$. Eight stringers are used.
The line follows up and crosses the Old Man River with a single span. In 3 places the course of the river was changed, as a much better location was to be had by this change. There is a steady rise in the grade, heavy cuts \& fills are now the order. Crow's Nest Lake is next reached at 100 miles from Lethbridge. Very heavy rock cuts are encountered along this lake, with grade still going up. The divide or summit of the

