2nd. Compressed air distributed through pipes.
3rd. Steam distributed as above.
4th. High specd rope or "eudless cotton cord," which rums at a speed of 5,000 to 6,000 feet per miunte.

5 th. Low speed rope ruuning 1,500 to $2,000 \mathrm{ft}$. per minute.
6th. Square shaft supported on tumbler bearings.
7th. Steand from a boiler delivered on the top of a piston with multiplying chains similar to the hydraulic system.
8th. Boiler aud engine fixed on the Crano and driving gear for the several motions required.

The 1st, 2nd and 3rd can ouly be applied to cranes fixed or moving over very limited areas. The 4th, 5th and 6th will transmit power over large areas, which, however, should be nearly rectaugular. The other two can be used generally wherever there is a railway track. The hydraulic system possesses great advantages over compressed air or steam, but experience tends to the conclusion that its common use will be attended with considerable incouvenience where the winters are cold. The use of compressed air has not been applied with great success in many cases.

Steam is largely used, and frequently carried through 1,000 feet of pipe without much inconvenience. The high-speed cotton cord runs at a speed of 5,000 to 6,000 feet per minuto. The cord works in grooved pulleys, is carried on rollers or other supports at intervals of ten to twenty-five feet and is kept in tension by a weighted pulley. Low-speed rope transmission is penerally elfected by a hemp rope running from 1,500 to 2,000 feet per minute. The square shaft has been used for many jears, the ouly special difficulty experienced being that of supporting the long main line of driving shaft. The Author exhibited recent designs whereby this difticulty has been very successfully overconie. The relative advantage of rope or shaft transmission is largely influenced by local circumstances. As a general rule the rope system costs less and is better where the distance for transmitting exceeds 200 feet. Below that distance the shaft is probably the best and cheapest. But the rope possesses advantages when machinery has to be driven at different levels, or at an augle with the point from which the power is transmitted. The stean crano employed under mauy differing conditions perhaps performs more functions than any other mechanical arrangement for lifting and placiug loads. All such cranes should lift and turn around by steam power. One specially illustrated had additional motions for altering the radius of the jib, for hauling materials so as to bring them within the reach of the machine, and also for moving empty or loaded cars. Fixed cranes are often seen so placed that one-third or even one-half of the number crected at a particular point are idle. It would therefore seem that for the same outlay, the best duty will be obtained from novable cranes. Where two or more railroad tracks arc parallel with the water front it will often be desirable to make the crane span the two lines of tracks, allowing headroom for the vehicles to pass under it. Cranes fixed ou floating vessels were also illustrated up to 60 tons power. Locomotive cranes up to 25 tons were described and also cranes specially adapted to terminal freight stations. One of these has lifted 80 tons per hour a height of 20 to 30 fect and deposited the loads $1 \frac{3}{3}$ to 2 tons each 60 feet from the point where taken up. A similar crane commonly delivers 240 barrels of oi: per hour the same height of lift and length of deprosit.
The cost per lay is one driver's w'iges and the necessary fuel, oil, etc. Five percent. per ann'am is ample allowance for depreciation. The cost of this sy stem of working is easily ascertained, but a great gain als s arises from the increased speeci of passing large quantities of merchandise.

CURVED C, ROSS-SLEEPERS.

BY - KECKER.

(Organ für die Forlschr atc des Eiscribahnwesens vol. xx., 1883 p. 31.)

The Author rem arks in this Paper that the shortness and curved form of m ost of the iron cross-sleepers now in use have been re garded ? arreat deffcts. He determines the most approfriate lengtb, ond not only justifies the use of the curved form, but r.coves its advantages over that of the atraight sleeper.
The be' t length for a cross-sleeper, whether of iron or wood, is found . to be 2.57 metres (8.42 foet $)$.

The modulus of elasticity in a beam is found by measuring

$$
f=\frac{2 \mathrm{P}}{\mathrm{EI}} \cdot \frac{(2 \mathrm{a})^{3}}{48}
$$

where $\mathrm{F}=$ = modulus of olasticity of prismatic body.
$I=$ moment of inertia with regard to neutral axis of cross section.
$2 P=$ weight over centre of beam.
$2 \mathrm{a}=$ distanco between supports.
The versed sine of the curve of dellection is thus proportional to the weight $2 P$ and the cube of the distance between the supports.
It is not necessary to know the absolute weight with which the beam is loaded at its contre, and the amount of its deflec. tion, as long as the proportion to which the deflection increases with the load can be ascertained.
As long as the limit of eiasticity is not exceeded, the deflection increases in the same proportion as the load. It would therefore be immaterial whether the beam was origimally straight, or shaped according to the curve of deflection. The same applies to an uniformly loaded beam on two supports, as in the case of a cross slecper, where the ballast forms the load, and the rails the supports, only in this case the deflection would be, of course, less than if the load we:e concentrated at the centre.

Curved sleepers also possess the following advantages over straight ones. In the former the pressure from the trains acts at right-angles to the slecper, and is transmitted directly to the ballast, whilst in the lattor a horizontal thrust, $l^{2} \cot a$ (the rails being inclaned an angle $90^{\circ}-a$ from the perpendi. cular), has to be borne by the fastenings of the ran and sleep. er. Curved slecpers also offer a greater amount of resistance against lateral movement thau straight ones.

It might certainly be argued against the curved sleeper that it has a tendency to act as a blunt wedge and force the ballast asunder, but experience proves that this is not the case when tolerably good ballast is used.-Tr. Ins. C. E.

THE ZINC MINES OF MINE HILL, N. J.

13Y W. F. FEmRIER.

sitdation, eably history, etc.
The celebrated Zinc Mines of Now Jersey are situated at both Stirling Hill and Mine Hill, but it is with the latter place only that I shall deal in this paper. During the summer of 1883 , I accepted the kind invitation of Dr. Cook, the State Geologist of New Jersey, to pay a visit to these mines. He accompanied me to them, and went over the ground with me, expla ning all the points of interest. After this I spent some time at Mine Hill, studying the zinc veins and the method of working them, and also collecting the numerous and rare mineral species of the locality.

The vein of zinc ore at Mino Hill is situated in a hill to the N. W. of the Wallkill River, and extends in a S. S. W. direction from the road leading to Hamburgh towards the S. W. end of the hill near the Wallkill. The peculiaritics of its formation will be noticed further on. The two names "Mine Hill" and "Franklin" sometimes lead people into the idea that they are two different localities, so that it may be well-to mention here, that the full designation of the locality is Mine Hill, Frunklin Furnace, Hardiston Township, Sussex Co., N. J. It is situated about 60 miles to the N. W. of the city of New York, on the line of the New York, Susquehanna, and Western Railway. In 1815.16, Dr. Fowier, who was a property-holder of the vicinity, first drew attention to the great variety of mincrals to be found in the outcrops of the veins at Mine Hill. He was an enthusiastic mineralogikt and although the
Nore.-Summer Essay, Eecond Year, Faculty of Adr. Sc., MeGill Universits.

