me quality rior grades, to the probe made to

three forms ned milk is rawn from oyed solely marketable in price is here that eople now or 15 years of wealth. essity.

and Great our butter outter they eese sell tonigh prices ar approxiilts accom-Take, for e supposed r be raised e been lost

able butter ars ago the r samples; s adoption ty. when I tell hey butter

on, and reat market. rom butter ling hotels eir tables: e is eating home-made imported

nest grades has longle of whev ty tubs of other butter, ordinarily made, I do not believe there is an expert in this convention that could point out the sample. Whey butter that will bring from 36 cents to 40 cents per lb. must have some merit with consumers. Of course, in the production of good whey butter, there must be good milk, with neatness and care in its manufacture. This is

imperatively demanded.

Five hundred gallons of whey make 20lbs. of butter, and factories running four or five vats turn off a tub a day, which, at the rate it has sold the past season, would amount to \$24. This amounts to \$700 per month, saved in a single factory in a material which has usually gone to the pigs, and been wasted. In a thousand factories this would amount to \$700,000 per month. I say wasted, because however contradictory it may seem, the whey, after the butter is extracted, is found to be just as valuable as a feed for hogs as when not treated by this process. It is claimed to be more valuable on account of the high heat or cooking to which it is subjected. During the past season I have experimented with it in feeding swine, and am satisfied that it is quite as valuable as whey as ordinarily fed.

THE PROCESS.

In this process the whey is drawn sweet, directly from the curds, to a vat having a copper bottom, and setting over an arch similar to

those used for boiling sap in sugar-making.

The butter works are separated from the cheese manufacturing department,-the arch and vat being arranged lower than the cheesevat, so that the whey may be readily drawn, simply by having a conducting pipe from one vat to the other. After drawing the whey, one gallon of acid is a ded for every 50 gallons of milk, if the whey is sweet. If the whey is changed, a less quantity will be sufficient; and if the acid is not sharp, 11b. of salt should be incorporated with it.

The acid having been added in the above preparation, heat is immediately applied to the mass until it indicates a temperature of from

175° to 185°, Farenheit.

As the cream rises it is skimmed off and set in a cool place till next day; it is then churned at a temperature of from 46° to 68°. according to the temperature of the atmosphere, and is worked and

salted according to the usual method of butter-making.

The acid is made by taking any quantity of whey, after extracting the cream, heating it to to the boiling point, and adding 1 gal. of sharp, sour whey to every 10 gals. of boiling whey, when all the casim and albuminous matter remaining in the whey will collect in a mass. This is skimmed off, and the whey left to stand from 24 to 48 hours, when it will be ready for use.

There is another process, called the cold process, which is said to make good butter; but I am not so familiar with its operations, or of the quality of the butter produced, as in the process I have described. In the cold process the whey is drawn into the zinc vat, or one having