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MATHEMATICS.

Solutions to Problems in the April Number.

26. Let A be the given point in the circum-
ference ; from A draw any two chords AB,
AC; through B draw BD parallel to AC and
through C draw CI parallel to AB ; join DE;
through A draw GAH parallel to DE ; GAH
shall be the tangent required.

Let BD, CE (produced if necessary) meet
in K,.then BACK is a parallelogram ; there-
fore the angles ABK, ACK are equal ; there-
fore the arcs ABE, ACD are equal, therefore
the chords AD, AL are equal. Now suppose
F the middle point of DE; join AT ; then
the angles at F are right angles ; therefore
AT passes through the centre of the circle.
Also, since GAH is parallel to DE, therefore
the angles FAG, FAHM are right angles ;
therefore GAH is a tangent to the circle.

27. Let ABC be the given triangle ; at the
point B make the angle CBD equal two-thirds
of art. angle ; through A draw AD parallel
to BC meeting BD in D; join DC ; then the
triangle DBC is equal to ABC. In BC (pro-
duced if necessary) take DIt such that the
square on BE is equal to the rectangle DB,
BC; in BD take BF cqualto BE; join IFE,
then FEB shall be the required equilateral
triangle. For since the square on BE .s equal
to the rectangle DB, BC ; therefore DB is to
BE as BF is to BC that is the triangles DBC,
I*BE have onc angle of the one equal to one
angle of the other and their sides about the
equal angles reciprocally proportional ; hence
they are equal to one another. (Euc. VI. r3.)
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Hence by addition we have the sum of the
series.
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29. Since imaginary and surd roots must



