a little moro cleratod than tho frebox end. With plenty of timo, and any quantity of picks and ahorels at command, it is, of oourse, quito possiblo to planta stationary ongino as armly and anlovel ona hill ahle as on a bowling green. Wben, howerer, the engine bas to adrance a feem feet along an inclined hendiand erery two or three minutes, the level of the bolter must ineritably be altered at each onvard morement. In such a caso, the engline-man is entirely at tho mercy of the slope he is working on, for the presenco, or absence, of water upon the crown of the Are-box. At the samo timo, the possiblo over-heating, or proper cooting of the tubes, and the object ionablo priming which tabes place when the water level is too high at the dre-bor end of the boiler, are entirely besond his control.
In their englae, as represented in our frst illustration, Messrs. Howard hare entirely overcomo those difficulties. Their arrangerment simply conelsts in placing the boller, with ito cyllinder and crank-bhan, acruss the frame work, instead of lengthwise, as in Fowler's engino. By this rethod the form and gencrally acknowledged adrantages of the locomotivo boiler are retained; while, on tho steepest hill, the steam epace is undiminished, and tho water level nover varies sumiciently to leave any part of the firebox or tubes uncorered. "In case tho field should Glape in tro directions, that is, if the surfaco inclines at right angles to the headland, one side of the carriago frame rould be lower than the other, and consequently the boiler (set across it) would 'pitch.' Bat then headlands are rarely, if ever, flat ; and tho engino driver, by choosing the right or lefthand side of it, can, in most casce, ensure that the wheels on one side stall be lercl with those on the other." The engine is monated upou three wheels, and hence it stands steadicr on ground that is not parfectly level.
Both Howard's and Fowler's locomotives are adapted to work on tho double ssstem. By this arrangement, two engines are emplosed at the eame plough. They work opposite to each other, and nove forward on the headland as the work proceeds. By the emplosment of two locomotires, " anclor," "snatch.block," and "windlass" aro unnecessary; while a considerable baring of time is effected. Fhen they flaish a field, ane of them instantly marches of with the plongh, cultivator or harrows, and the other winds up the furrows length of rope, and quickly follows. In commencing the next piece "there is nothing to be lowered into a hole in the hard ground, no heary apparatas to be lagged round the feld in a cart or waggon, to be left in instalments at tho several corners, no rope to be trailed round the same journey by a pair of horses, no windlass to bo carefully placed by 'backing' and 'locking,' \&c., the wheels dropped into holea purposely dag, held by stakes drivon down into ibe ground, attached to the engine by adjusted rod or chain, and the engine-sflecle secured in position by wedges drisen beneath their fellocs. One engine enters the field, takes the implement and trailing-rone to the far side, while the other engine takes up its position on the near side, and without more ado the tillage begins."
beas as a Lavocleainio Crop.-My peas giolded about thirty bushels par acre. Bot they are fall of bugs! Can nothing be done to get rid of this pest? Lato sowing is said to be a remeds, but it is often worsc than tho discase, as, if dry weather sets in, the crop will be light. A good, amothering crop of peas will sometimes clean the land as well as a summer fallow but a light cropleares it fonl. Notprthstanding tho bugs, I think that I bavo had no more profitablo
crop this seasua than these peas. Ihad forty of vines, nicely cured, brightadedsweet, which I consider mure nutritious than over-ripo and poorly-cured clorer hay. There was an immense growth of vines, and they nmotbered the reeds. I ploughed the land twlicy ailier tho crop was uff, and as the Doacon says,
it louks as well us a smart summer fallow, and in his it louks as well us a smart summer fallow, and in his
op pinun will , ire better wheat than if if had beon

Rice and the Rice Orop.

The Nerr-iork Joumal of Commerce has the follorring interesting articlo on this subject:
This grain, which is one of the staple proluctions of our countryand an importantarticlo of commerce It has been estimatod, forms the principal food of nt least one-third of tho human race. Where it origi-
nated is not now hnown, but from time immemorial it has been the chief subsistence of the commou people, and a prime article of diet with all clases in Southern and Eastern Asia, whero it has boen most extensively cultivated. It has been supposed by some that it was in commnn usuamongst the ancients, and that it mentioned in scriptnre under a name
that is not familiar at tho present day. Its very early use is begond question, but we have no dennite accounts regarding lt, as wh hare of some other grains, nor is it found, like wheat forinstance, among too remains of antiquity. It probably bad its origin somenhere in South-eastera Asia, and from there Fas introduced iuto Southern Europe, where it is caltirated to some extent, but it has never been produced or used so largely in any othrr part of the
world as in India and China. It was frst introduced Forld as in India and China. It was Arst introduced
into this country bs Sir William Berkeley of Virginia. in 1647, who receired half a bushel of the seed, from Which he is said to have raised tho first year 16 bushels of excellent rice, and thus the cultivation of it was commenced and carried on. It has been raised to some oxtent in Virginia ever since, but the amount has beon rery small compared with that raised in some other southern Statee, and especially South Carolina, which has produced 75 per ceat of the rico crop of all the States. Various accounts are siren of its introduction into South Carolina, one of which is that in 1694 a Dutch brig which put into Charleston left about a peak of paddy (which is rice in the busk,) and that Gov Smith distributed it among his fricnds for cultiration. Another account states that it was introduced into Charleston from Canton, in
1772, by John Bradley Blake. The production of rice in South Carolina rapidly increased, and in 1550 it amounted to $150,930,613 \mathrm{lbs}$., the production of the wholo country the same year bcing $215,313,097$ lbs From these States the cultiration of it extended into others, Georgia rankingnext to South Carolina in the amount produced. It is generally supposed that a hot climato and wet soil are essential 10 its cultiration; but it ls raised on high aud dry land, and the range of latitude in which it can be successfully cultivated is very wide. Irrigation, however, greatly increases the crop, à does a warm climate; and there is probably no part of tho roorld better actapted to it than the low marshee of South Carolina and Georgia. On account of the extreme unbealthfulness of these regions, it has always been thought that negro labour alone could bo emplojed, the blacks haring the same immunity as in Africa from the ferer which is deadly to the whites. This opinion is undoubtedly correct. and unless the blacks continue the rultivation of these rice plantations, they will probably run to waste, and the amount of the crop irmer gears, when thero was nothing to interfere with its production. It is needless to say this would be a great calamity, as the rice from South Carolina and Georgia is undoubtedly the finest raised in any part of the world. At the great Industrial Exhibition at London, in 1851, the rice from South Carolina exhibited by E. J. Heriot, receired a prize medal and was pronounced bs the jury to bo "magnificent in size, colour and clearness," and the American was regarded as much the Enest in quality of any on exbibition. Its importance as an article of commerce may bo inferred from the fact that the amount expurted froma this countrg las reached as high as 212,983 tierces in a ycar.
It may be interesting to some of our readers to harean account of the mode of cultivation adopted on the rice plantations where tho overflowing of tho land is resorted to. The land selected is that which is abore the reach of tide or salt
Water, and which is not liablo to the heary freshets that flood the country on the upper parts of the rivers, as the irrigation must bo completels under control. The land is prepared by the erection of dykes and digging of ditches, and divided into as many soparate felds as can bo separately attended to, in tho rarious operations required, in a single dar, each field capablo of being shut of from all the rest. The felds are plunghed in the fall or carly wioter. and orerfowed when the weather is warm. In
March the land is druncd and hept dry, and nhen in a pruper stato to trork, it is hariutred or hoed, and trenches for the seed aro made 12 or 15 inclias apart, and running at right ungles to tho drains or ditches The meed is вown in tho ironches in Aprit, and covered lightly with soil, and thon tho wator is let in upon It through the grates and suffered to stand from rour
to six. deys, until the grain begins to swell. The
water is let in a second timo when the hlado is just
abovo the ground, abd alloral to romain about the gamo length of timo, when it is thoroughly drained. In about ilro or six weoks the Irst hoeng takesplace, and a fecond ubout ton days later, Fhen the "long water," ns it is called, is let on for tro wecks, deep for fuur dags and gradually diminishing untit it is daained agath. When the feld becomes dry it is hoed again. Un the appoarance of a joint it has another bocing and the "joint water" is put on, which remams until the grain is matured, a period it may be of tiro months. A few days beforo cuttlog, the water is drawn off for tho last time. The rico is cut with a sickle, and after threshing another important operation is to ve gone through, the removal of the hask or shell, which closely envelopes the kernel, and to which it adheres with great tenscity. This was formerly accomplished by braying it in a morter, and thesame course is nor pursucd to some extent, but mills are constructed in whish it is partially ground, without destroying the kernel altogether. Tho wholo is then run through a graduated cyhader siore, similar to tho screcns by which coal is assorted, and the hulled rioe comes ouv in three separate parcels or grades, first the llour and fino picecs which have been abraded by milling, then the " middling," and after that tbe " prime" rice, which consists of kernels nearly or quito whole. Tho prime rice is subjected to still another process, which is called polishing or brushing, and which is effected by running it through a rapidly revolving wiro screen, lined in part with slreds of sheepskin. This removes tho flour adhering to tho surface of tho kernels, and the rice is then ready for market. Tho prime rice is the rice of commerce. The other portions are reserved for homo consumption.
Tho chemical properties of rice adapt it much more for use in warm than in cold climates. It has a great amount of starch and gluten in its composition, and very little oil, so that its nlesh-producing quality is limited. Whether from the knowledge of its chemlcal propertics or as the result of long experience, it bas come into very extensive use in the warmest regions of the glove, as in India for instance, where the heat is most intense and long continued. It has always been in much more general uso in the Southern states of our own country than at the North, but it is an article of extensiso consumption in all the States, and we think it might bo still more largely used with great adrantage to the general health, especinlly during the summer season.

The Potato Disease.

Tuz Irish Furmers' Gazette says on this subject: \because During the present prevalence of the potato disease in somo parts of Ireland, where Peruvian guano and other ammoniacal stimulating inanures are so universally used in the cultivation of this plant, most particularly would we desire to draw the attention of our readers to the following statoment of Baron Liebig. Offrntimes, through the columns of the Gavetle have we directed our readers, previous to the putting in of the potato crop, to substitute the uso of the l'hospho-guano or other manures rich in phosphates for the indiscriminate use of the Peruvian or bighly ammoniacal guavo. Year after year lave wo tho sad experienco of the potato disease to record. Liebig tells us plainly what should be done to alleviale the disease, and field practico has most universally and decidedly endorsed his statement in proof that plosphates and polash, not ammonia, are the vements the potato requires, and must hare, in order to effect ity healthy and vigorous development, thus providing the plant with the power, in a great measure, to withstand the climatio intlucoce which, in its weak state, it so easily and readily falls a proy to. The statistics of this year
will sher that the increased uso of strong ammoniacal manures for the culture of the potato is accompanied with increased experience of the disease.
"Though tre cannot over-estimate the value of well-saved farm-yard manuro for special and judiciors application, we thiak that its sole use for the cultivation of the potato is much to lo deplored; its proportion of phosphates must be increased if probtable results are to be looked for in the potato crop.Err another senoon passes over our heads we carnestly trust that the cultivators of tho potato will seok to apply to the land intended for its growth thoso rements necessary and essential to its healthy and vigorous developinent. If the indiscriminato use of aromoniacal manures bo continucd in polato culture,
it will most assuredly be accompanied with that irregular and weak cxpansion of tissue, at the ex pense of the quality and strength of vital sap neees gary to euable it to withstand the clima ic influence ycarly brought to bear upou it. Ae in the caso ol animal life, so is it in regetable life-conetitutional orerstimalating food."

