There are other technical criteria which may help policymakers to decide, in the event of emissions reductions being deemed necessary, which gases should be considered. Does the gas contribute in a major way to current, and future; climate forcing? Does it have a long lifetime, so earlier reductions in emissions would be more effective than those made later? And are its sources and sinks well enough known to decide which could be controlled in practice? The table opposite illustrates these factors.

How much do we expect climate to change?

It is relatively easy to determine the direct effect of the increased radiative forcing due to increases in greenhouse gases. However, as climate begins to warm, various processes act to amplify (through positive feedbacks) or reduce (through negative feedbacks) the warming. The main feedbacks which have been identified are due to changes in water vapour, sea-ice, clouds and the oceans.

The best tools we have which take the above feedbacks into account (but do not include greenhouse gas feedbacks) are three-dimensional mathematical models of the climate system (atmosphere-ocean-ice-land), known as General Circulation Models (GCMs). They synthesise our knowledge of the physical and dynamical processes in the overall system and allow for the complex interactions between the various components. However, in their current state of development, the descriptions of many of the processes involved are comparatively crude. Because of this, considerable uncertainty is attached to these predictions of climate change, which is reflected in the range of values given; further details are given in a later section.

The estimates of climate change presented here are based on

 the "best estimate" of equilibrium climate sensitivity (i.e the equilibrium temperature change due to a doubling of carbon dioxide in the atmosphere) obtained from model simulations, feedback analyses and observational considerations (see later box: "What tools do we use?") ii) a "box diffusion upwelling" oceanatmosphere climate model which translates the greenhouse forcing into the evolution of the temperature response for the prescribed climate sensitivity. (This simple model has been calibrated against more complex atmosphere-ocean coupled GCMs for situations where the more complex models have been run).

How quickly will global climate change?

a. If emissions follow a Business-as-Usual pattern

Under the IPCC Business-as-Usual (Scenario A) emissions of greenhouse gases, the average rate of increase of global mean temperature during the next century is estimated to be about 0.3°C per decade (with an uncertainty range of 0.2°C to 0.5°C). This will result in a likely increase in global mean temperature of about 1°C above the present value (about 2°C above that in the pre-industrial period) by 2025 and 3°C above today's (about 4°C above pre-industrial) before the end of the next century.

The projected temperature rise out to the year 2100, with high, low and best-estimate climate responses, is shown in the diagram below. Because of other factors which influence climate, we would not expect the rise to be a steady one.

The temperature rises shown above are realised temperatures; at any time we would also be committed to a further temperature rise toward the equilibrium temperature (see box: "Equilibrium and Realised Climate Change"). For the BaU "best estimate" case in the year 2030, for example, a further 0.9°C rise would be expected, about 0.2°C of which would be realised by 2050 (in addition to changes due to further greenhouse gas increases); the rest would become apparent in decades or centuries.

Even if we were able to stabilise emissions of each of the greenhouse gases at present day levels from now on, the temperature is predicted to rise by about 0.2°C per decade for the first few decades.

The global warming will also lead to increased global average precipitation and evaporation of a few percent by 2030. Areas of sea-ice and snow are expected to diminish.