 Solve	for Maneuver Positions and Launch Azimuth (Continued)
	$A_s - \Omega = \tan^{-1} \left[\cos i_t \tan(\omega_t + \theta_t) \right]^n$
	A _S = right ascension of the satellite at the point of injection into the final orbit.
	L_{S} = latitude of the point of injection
	$L_s = sin^{-1} (sin i_t sin (\omega_t + \theta_t))$
(b)	Injection Into Transfer Orbit
	(Assuming injection occurs at perigee of transfer orbit)
	$A_p - \Omega = \tan^{-1} [\cos i_t \tan \omega_t]$
	$L_p = \sin^{-1} [\sin i_t \sin \omega_t]$
	$(\theta_t = 0 \text{ at perigee})$
(c)	Injection Into Intermediate Orbit
	$A_{BO} - \Omega = \tan^{-1} \left[\cos i_t \tan(\omega_t - \phi) \right]$
	$L_{BO} = \sin^{-1} [\sin i_t \sin(\omega_t - \phi)]$
	ϕ = central angle in waiting orbit, ϕ = ω + θ .
(d)	Position of Launch Site
	$A_{L} - \Omega = \tan^{-1} \left[\cos i_{t} \tan(\omega_{t} + \phi - \underline{-}) \right]$ Re
	$L_{L} = \sin^{-1} \left[\sin i_{t} \sin \left(\omega_{t} - \phi - \frac{x}{-1} \right) \right]$ Re
	x = ground range attained in ascent to the waiting orbit over a non-rotating earth and is obtained from the launch vehicle data.
(e)	Launch Azimuth

ī

2.9

an Sne

. "

.

From spherical trigonometry, the uncorrected launch azimuth is given by:

-b29-