tho solution quite limpial and miscible with water, without the production of turpidity. I conclude that when a warm solution of citrate of iron cxercises a prolonyal action upon recently precipitated hydrutce scoguioxide of iron, it has the property of dissultiay a portion of the hyldrated buse.

Tho preparation of scales of citrate of iron is not at all difficult, even if all the citricacid has not been saturated. But to prepare the

amaroniacithati of inow.

successfully and handsomely, the complete saturation of the citric acid with hydmated sesquioxide is quito necessary. If this is not the case, the resulting salt is removed from the glass plates with moro or less difticulty, and cannot be obtamed in handsome scales, being generally of a muddy culur. Lhave beern in the habit of reserving about une-sisteenth of the solution of citrate of iron, adding to the main bulk of the solution aqua ammonia until in slight excess, and then the reserved purtion. The salt obtamed was mvanably found to be rapidly sulublo in water, and, while it is readily removed from the glass plates, to be less prone to deliquescence than the compound completely saturated with ammonia. the durection of the Pharmacopecia to use a given measure of aqua ammonia is objectionablo, on account of the inconvenience resulting from the varable strength of that article as found 10 the shops or ubtained from tho mannfacturer; and while it is a very simple matter for the skilled operator to determine the strength of equa ammonia expeditiously, it requires more time than pharmacists not skilled or prepared for these deterninations aro willing to devite to it, and as a consequence, the preparation is purchased. But if by some simple change in the manipulation we can reach the same end and at the tmeavoid the possibility of failure ly reason of inequality of the substance used and that intended to be used, wo encourase the preparation of this salt, and by similar attention to other preparations encourage the home production of many that are now exclusively procured from the manufacturers. Simplicity in the construction of formulas, and explicit directions that will enable the unskilled operator to determine the nature of the numerous dufficulties that rise in his path, will do more toward encouraging the home production of pharmaceutic preparations than the mumerous lectures that are given through the pages of journals of pharmacy, while at the same time by the practice the unskilled become skilled.

citrate of iron and quina.

This compound of the Pharmacopicoin I hare found so excessively difficult of solubility, even when licat is applied to favor it, that it has been a question with me whether its medicinal efficacy is not impaired thereby. There oxists no particular difficulty in preparing a handsome article whicn the directions of the Phamacopeia are followed. but these directions are lieble to the same objections as specified previously with regard to solutions of citrate of iron, as at good result is dependent entirely upon the acenrate attention given the preparation during the process of heating ; for if the heating reaches a certain point of temperature higher than directed when tho quinia is being d ssolved, it is apt to agglomerate into masses which are very immanagable and dificult
to dissulie. In my experience, tho dificulty is obviated by triturating tho properly precipitated and washed quinia, with a portion of the solution of citrate of iron, introducing it into a flask amd then adding tho remaining sulution. By occasional agitation, the quinia dissolves in a slort time, fosming a clear solution, which may bo concentrated un a wator bath without paymg any special, attention to temperature, and whll scalo with perfect facility. But by far the more popular salt is the
amboniogithate of hon and quinia, which appears to have replaced the officinal compound almost ontirely. This I have prepared almost succesfully by reserving about one-sixteenth of the solucion of citrate of iron and quinia obtained as above, anal adding to the remaining fifteen-sixteenths, contained in a flask, dilute aqua ammonia in fractional portions, until a permanent precipitate results. Cpon each addition of ammonia, quinia is copiunsly precipitated, but dissolves readily by agitation until toward the end of the process, when it will dissolve more slowly, and care must be excrcised to avoid an uadesirable excess of alkali. The addition of the reserved onesisteenth of solutic, will redissolve the precipitate formed, by careful manipulation; and the solution when evaporated to the consistence of treacle-which can in this instance also be done upon an ordinary watur bath rithout special care as to temperaturn -will, when spread upon glass plates, furm glass scales of a handsome garnet color, of perfect and rapid solubility, and only moderate deliquescence.
Some remarks on dispensing these results may not be out of place here, fur I have on various occasions expericnced annoyance which, by a little foreknowledge, might have been entirely obviated.

solutions of the solunle cimrates

The most expeditious method of dissolving the soluble scaled preparations consists, in my experience, in placing the salt in a mortar, adding just sufficient water to cover it, allow: ing it to stand a minute or so, and then gently triturating the mixture with a pestle, when perfect solution will result. If it is attempted to dissolve these salts by direct trituration with water, they will adhere to the pestle and sides of the mortar, and greatly delay the operation. Dispensers are in tho habit of simply ihrowing the scale into the aqueous menstrum and promoting solution by stirring, and while this is sometimes as cifectual as the method proposed, it frequently delays solution, and should therefore not be resorted to.

fills of the soluble citrates

are found by me to be most conveniuntly and cxpeditiously prepared by adding from ten to fifteen per cent. of dinely-powdered clm bark, and forming a mass by the aid of glycerine, which appears to exercise just sufficient solvent power to effect mpper cohesion. Plastic mass is olbtanel, wizich does not harden rapidy, and is readily rolled into pills.

The saffron of Pharmacy, which is prepared mainly in two or three of the provinens os France, is so light when cricil that from 35,000 to 40,000 llowers are required to 1:ake a pound. Each plant produces only three flowers.

On the Aniline or Ooal-Tar Oolors.*
BY W. H. JERKIS, Fis.S.
Cimel-Tia, Hcazul, Nitrobenzol, Anehan, and Anilane P'urple or Matre.
In this short course of lectures, it is my desire tu bring lefure zun a sumewhat condensed histury of tho artificial colouring matters, gencrally known as the "Coal-Tar Colors." By this designation it is not meant to imply that coloring matters actually exist in c anl-tar, and may, therefore, be extracted from it, but that coal-tar is the source of ces. tain products which, whon changed by various chemical processus, aro capable of ytelding colored derivatives. You will thus pereeivo that it is important iur us to consider the varivas means employed to oftann the raw materials befure giving our attention to the coloring matters themselves. We will, thercfrre, at once proceed to the consideration of "coal-tar;" its formation and constitution.

Conl-tar ennsists of the oily fluid formed by the destructive distillation of coal, and is ob. tained as a secondary product in the manufacture of coal-gas. Originally, cual-tar was a great nuismice to the gas mamuactuter, and it was often a problen to him what he shoulc' do with it. I need scarcely say that this st ate of things is now changed. In the gas works the coal is distilled in large returts, snmetimes 25 or 30 feet in leugth. They are made of fire-clay or iron, and several are arranged in one furnace or oren, as it is usually termed. Each retort is fitted with an iron mouth-piece, from which a vertical tube rises, the mouth-pieco also having a door fastencd with a cross-bar and screw.

When in use, these retorts are rapidly filled with coal by means of a proper scoop, and then the doors areluted and fixed so as to be air-tight. Distilletion commences immediately, as the retorts are constantly kept red hot. The gas and other products which form pass up the front vertical pipo (connected witin the mouth-piece), through a bend, and down nter a long horizontal tube, called the "hydianlic main." Here most of the oily products condense, and as they accumulate pass on with the gis down the general mair, and flow into a tank provided for their recer.tion. These oily products constituto "coaltar." The cual-gas, leaving this tar behind, passes on to the condensers, and deposits a second, but smaller quantity of tar, and is then purified and stored in the gas-holders. The gas, however, does not interest us now.
I an here distilling some coal in a small ghass retort, the beak of which is inserted into ono of the openings of a three-necked receiver. The second opening is connected with the tube, so that the gaseous products may be cramined, while the third and lorer one is fitted to a small bottle, in which you seo we have already obtained a quantity of an oily fluid. This is our coal-tar.

H:wing now seen how coal-tar is produced, we will consider of what it consists. Coal-tar is by $n 0$ means a definite body, but contains a great number of substances, as a glance at the following table will show:-

The Canter Iectures, delitercd Lefora the Societs of
Arth. p'uluished in the Chemisal News.

