See Alphabetical Index to

THE
Railway and Shipping World
With which is Incorporated The Western World. Esstablished 1890.
Devoted to Steam \& Electric Railway, Shipping, Express, Telegraph \& Telephone Interests

TORONTO, CANADA, MARCH, 1903.
o Cents a Copy.
Si a Year

The Overloading of Locomotives.

By G. J. Bury, General Superintendent Lake Superior Division, C.P.R.
The average trainload in tons on our railWays in 1889 was 179.35 and in 1901 it was 21.26, an increase of ror.91. This is due to locomotauses : reducing gradients, heavier These methes and heavier loading of engines. tation methods have increased the transpor ed theapacity of the railways which adopted them and reduced expenses, but the third method was carried to such manages that progressive railway managers have called a halt. The vensioading of engines is a most exrepairs practice, occasioning more excessivan ordinarily needed and xcessive fuel consumption, it lesPens the capacity of a railway, is exthe can in overtime and is indirectly
cause of train accidents.
The traffic of but few lines is contuating , the majority of roads flucfreight, by reason of the large nering movement following the garclosely of the crops, etc. Officers closely identified with transportation that hnize that the fewer additions novinve to be made to the staff in are the a certain tonnage the better age 15 miles. If freight trains avergine 15 miles an hour, train and en5,000 min freight service can make average miles a month, while if the an hour be reduced to eight miles Where (and I have known districts miles an the average was only four more than hour), the men cannot stand crews under 3,000 miles a month. Sixty make under the former average will while 300,000 train miles in a month, hour it an average of eight miles an 200 ext will take 40 more crews or train extra men to handle the same would be me. Train and enginemen miles ber content to average 2,500 or, for ser month during slack season, the year say eight or nine months in or 5,000 dear, provided they make 4,500 fore, when durg the remainder. Thereconstant traffic becomes heavy the to to train staff could be looked if the handle double the freight traffic f_{0} mener engines were loaded so that the m_{0} e new avage speed be maintained. The the longer men that have to be employed, and the greater hours train crews are kept on duty care and the risk of train accident, as less ate and watchfulness is displayed-and many trains and alertness has prevented expected train wrecks. A man can only be without to work a certain number of hours on the rest, and when men are a long time formed as their duties are not as well perconsumption when fresh, resulting in extra fuel
Looking, dilatory movements, etc. g at the matter from a financial

kennet w. blackwell,
President Canadian Society of Civil Engineers.

Oil and waste for locomotive.
Fuel (5 tons at $\$_{3}$ 20) $\begin{array}{r}30 \\ 40 \\ \hline\end{array}$

Or ${ }^{22.3}$ cents per thousand ton miles.
The same train, if loaded with 1,000 tons (tare and contents) averages is miles an hour over the same district, and the cost is :

There is less strain on the engine in hauling the lighter train and engine repairs less, but what the difference would amount to could only be ascertained by actual tests carried over some period.

The economical engine load is variable and is governed, not only by the number and length of grades, but by the density of traffic. On a road where traffic is very light at certain periods and dense at other periods, it might be good transportation to load engines heavily during light traffic, but it would be suicidal to load engines heavily when traffic was dense, even one train staggering and doubling over a district will demoralize the trains following and those met, resulting in overtime, extra consumption of fuel, and the risk of train accident which increases when train and enginemen are long hours on duty. In loading engines it has been the practice on some roads to so load them that they would haul a train at seven miles an hour over the steepest grade. If the steepest grade were of short length, no great delays might result, but it the steepest grade for instance, was to be eight miles in length, an engine, with a run for it, would take one hour to make the eight miles and the longest time it takes to make the distance between two stations is what limits the traffic. With trains loaded in this way, the traffic would be greatly restricted.

In a general way locomotives should be so loaded when traffic is dense that they may make an average speed over a district of 15 miles an hour, providing there are no unusual delays, and while theoretical tests are all very well for a basis on which to work, the only way to arrive at the engine load is by actual tests in practice. After ascertaining what an engine will do in actual practice the load should be shaded slightly from this. No fixed rule can be given for the loading of engines, but the conditions of each district at each period must be closely studied and the load be made such that the train can make reasonably good time. It may be taken as a general principle (providing engines are in good condition) that, where trains are a long time on the road, and the dispatching is not at fault, that the engines are too heavily loaded. A live superintendent will hustle over his district on freight trains, see on the ground where the trouble lies, and fix the load to meet the conditions without delay.

The foregoing paper was read at a recent meeting of the Canadian Railway Club.

The Algoma Central and Hudson Bay Ry. has adopted central standard instead of eastern standard time for operating its trains.

