and serpentinous layers appear to alternate, and occasional fragments of Eozoön occur in both, while the smaller forms resembling fossils are, so far as can be observed, limited to the serpentinous layers.

At Arnprior on the Ottawa a portion of the Grenville Limestone presents dark graphitic layers parallel to the bedding, and giving it a banded grey and white appearance which has led to its use as a marble. An analysis by Dr. Harrington shows that the graphitic layers contain 8.32 per cent. of magnesia, the lighter layers only 2.57 per cent., in the state of grains or crystals of dolomite. Associated with the marble there are also beds of brownweathering dolomite, affording 42.10 of magnesia. The graphite in this marble, under the microscope appears as fibrils and groups of minute clots, and sometimes coats the surfaces of crystals or fragments of calcite, the appearances being not unlike those seen in carbonaceous and bituminous limestones of later date.

In both the above cases the magnesium carbonate is evidently an original ingredient of the bed, and cannot have been introduced by any metamorphic action. It must be explicable by the causes which produce dolomite in more recent limestones.

Dana has thrown light on these by his observations on the occurrence of dolomite in the elevated coral island of Matea in Polynesia, under circumstances which show that it was formed in the lagoon of an ancient coral atoll, while he finds that coral and coral sands of the same elevated reef contain very little magnesia. He concludes that the introduction of magnesia into the consolidating under-water coral sand or mud has apparently taken place—"(1) In sea-water at the ordinary temperature; and (2) without the agency of any other mineral water except that of the ocean;" but the sand and mud were those of a lagoon in which the saline matter was in pro-

^{1 &}quot; Corals and Coral Islands," p. 356, etc.