2. In a plane are n points, no four lying on one circle, and through each set of three is described a circle. Find the number of intersections of these c reles exclusive of the original points, each ciscle being supposed to cut every other circle.

We have ${ }^{{ }^{2}} \mathrm{C}_{3}$ circles.
Now, if each circle would cut every other circle in different points we would have $\frac{{ }^{n} C_{3} \times\left({ }^{n} C_{3}-1\right) \times{ }^{2}}{2}$ intersections; but each one of the n points is on ${ }^{n-1} C_{2}$ or $\frac{(n-1)(n-2)}{1.2}$ circles, and, therefore, counts as $\frac{(n-1)(n-2)}{1.2} C_{2}$ intersections. \therefore number of incersections exclusive of the original points is

$$
\frac{{ }^{n} C_{3} \times\left({ }^{n} C_{3}-1\right) \times 2}{2}-n\left\{\frac{(n-1)(n-2)}{1.2} C_{2}\right\} .
$$

3. Sum to $2 n$ terms the series:

$$
\begin{aligned}
& 1^{2}-3^{2}+5^{2}-7^{2}+\ldots \ldots \\
& \left.S=\left(1^{2}-3^{2}\right)+\left(5^{2}-7^{2}\right)+9^{2}-1^{2}\right) \ldots \ldots \\
& =(1+3)(1-3)+(5-7)(5+7)+(9-11)(9+11) \ldots . . \text { to } n \text { terms } \\
& =-2[4+12+20 \ldots \ldots \text { to } n \text { terms }] \\
& =-2 \frac{n}{2} \cdot\{24+n-18\} \\
& =-8 n^{2}
\end{aligned}
$$

4. Between what two positive integers does the value of $(\sqrt{29}+5)^{n \mathrm{n}}$ lie?

$$
=1-\text { a positive proper fraction if } n \text { is positive }
$$

$\therefore(\sqrt{29}+5)^{2 n}$ iies between $\mathrm{I}-\mathrm{I}$ and I .

MAGAZINE AND BOOK REVIEWS.

"The Mystery of Evil," by John \mid two short stories, "Love and a Fiske, is the opening article in the April number of the Allantic Monthly.

It is a serious and vital consideration of the more perplexing side of existence which will afford to many the effect of reconciliation with present unexplained conditions. "Cromwell; A Tricentenary Studs," by Samuel Harden Church, and "The Solar System in the Light of Recent Discoreries," by T. J. J. See, are both atticles of weight and interest of that exceilent kind that the readers of the Atlantic have been encouraged to expect. There are Morland. There is an example of

$$
\begin{aligned}
& \left(\sqrt{2} 9-51^{2 n}=\left(29^{1 / 2}-5\right)^{2 n}=29^{n}-2 n 29 \frac{2 n-3}{2} \cdot 5+\frac{\frac{20 .(2 n-1}{1.2}}{2 \cdot} 29^{\frac{2 n-2}{2}} \cdot 5^{2}+\ldots \ldots 5^{n}\right. \\
& \therefore(\sqrt{29}+5)^{2 n}+(\sqrt{29}-5)^{n}=2\left\{29^{n}+\frac{2 r(2 n \cdot 1)^{0}}{1.2} \cdot 29^{n-1} \cdot 5^{2}+\ldots .5^{2 n}\right\} \\
& =1=\text { a positive integer } \therefore(\sqrt{29}+5)^{2 n}=1-(, 29-5)^{2 n}
\end{aligned}
$$

