10. Oleic acid.
11. Solution of cod liver oil in ether.
12. Common resin dissolved in alcohol.
13. Various other kinds of resin.
14. Picric acid.
15. Bichromate of potash.
16. Artificial tannin made by the action of nitric acid or con-
centrate Centrated sulphuric acid upon resins, gums, fernambuc wood, Peat, etc. In this way a substance is produced which is as atringent as tannin, and will precipitate a glue solntion in the ${ }^{\text {Brame}} \mathrm{m}$ nner as tannin. It does not however deserve the Dame of artificial tannin; the investigation of the most eminent chemists having proved that in this way only a modiication of the acid used is formed, which does not possess the
property of preventing the skin fibres of the hides from adher. property of preventing the skin fibres of the hides from adher-
ing after drying and thus make the tanned skins soft and flex. ing after drying and thus make the tanued skins soft and flexDerely This is the true function of the tanning process, and not
forelidifying of the glue or gelatine in the hide as was Derely the solidifyi
formerly supposed.
We are willing to expand on this subject by giving further
$d_{\text {detail,; if }}$ are willing to expand on this subject by giving

2tisceltancous.

A NEW SUN DIAL.
(See page 277.)
the A correspondent of La Nature communicates to that journal the following description of a sun dial to be used as a regulator in the house, the instrument being placed in the window when It desired to ascertain the time.
It consists of three parts, which may be easily disconnected by the removal of screws from two of them. The form, which i_{8} purely geometrical, comprehends the right line, the circle,
sind the and the ellipse. It is of the equatorial kind - the only one that is capable of giving exactness. In spite of its small size, the hour may be read on it from minute to minute as on a the odd The dividing lines indicate the even minute, while the odd minute is given when the shadow falls botween two
divisions, its passage through the interval having an appreciablens, its passage throngh the interval having an appre-
it duration of only fifteen seconds. In selecting this form it has been the author's object to obtain sensitiveness. The Rettility of the style prevents all danger of the instrument Retting out of order. The instrument represented in the acCompanying engraving was tried and found to be exact to a quarter of a minute, from seven o'clock in the morning to ${ }^{0} 0_{0}$. Whe error, if there was any, diminished on approaching To when it became nil.
To make use of the apparatus, a window is selected which Teceives the sun. Then the exact hour is obtained from a batch, or by other means, and marked on the dial, account being taken of the difference between the true hour and the thean hour; this being indicated in a table glued under the ${ }^{6}{ }^{\text {sisere. Then }}$ the position is regulated by means of leveling 8crews. It is requisite (1) that the mid day line the style, and
a leaden wire shall be in the same plane, and that (2) the style
bel b_{e} parallel wire shall be in the same plane, and that (2) the style
an an anglelel with the axis of the earth, or make with the horizon
ba an equal to the latitude of the place. When the dial has $I_{i} i_{\text {r }}$ regulated at the place selected a datum point is made there. it is more convenient to fix a very horizontal shelf on three Wcrews, or to cause the dial to abut against a piece of wood Thatked into the form of a square, which shall mark the angle 8hall the apparatus makes with the line of the window. We By this ays be certain then to put the dial in the same place. By this regulator watches may then be set with all security. Bensed the invertion of clockwork solar instruments have posWefsed no utility, except as regulators, on condition that they Were instruments of precision. The exact hour, since the Thise of railways, has become a social necessity.
This system of sun dial, when made of iron, is especially addapted for public uses in temperate regions. For such purposts it is ouly necessary to fix the base of the dial against a dial, point downward, and turn up the figures. Thus, a sun ground $1 \cdot 3$ meters diameter, fixed at 3 or 4 meters above the ${ }^{\text {bronnd, }}$ Which when carry divisions spaced 6 millimeters apart, evech would make them perfectly visiole. It would present every guarantee of precision, solidity, and durability. If the
principed itincipal divisions were either hollowed out or formed in relief there mige easy to reprint the instrument. At the side of it might be placed a table of corrections.

A NAVAL EXHIBITION.

From the 10 th to the 20 th of April last there was held at the Agricultural Hall, London, a naval and submaring exhibition such as has prohably never before been seen in any other country for extent and completeness. England is admitted to be the dominant power on the sea, and her great maritime industry is the most national of all industries. Of merchant steamers alone England possesses nearly 30,000 , valued at $\$ 442,500,000$, while the rost of the 10,000 sailing ships carrying the English flag is $\$ 200,000,000$. Scarcely one of these ships was built on foreign soil. It is thought that at least one million of persons are interested in the building, maintenance and navigation of this vast fleet of vessels. With such resources to draw from it was an easy matter to hold a naval exhibition in London. During the ten days of its existence it was visited by more than 60,000 people. In the centre of the hal! was a diving tank in which apparatus for the raising of wrecks and the saving of life at sea was test ${ }^{2}$ d and discussed. The appliances of this class in the exhihition were especially numerous. They comprised life-belts, floating decks, "ansinkable" ships, cork mattreses, air pillows, inflitable pett: coats, and many inventions which sea-dogs of the Captain Cuttle school would, without hesitation, have denounced as "fiddle-faddles." There were means of curing a ship of all the complaints to which it may be subject ; chains and weights to keep it from heeling over, and to right it again, even when thrown on its beam ends; arrangements to prevent its sag: ging; and patent railways to remove it from place to place. All the details of a vessel, it seemed, were the objects of inventive skill. Patent scuttles, scuppers, stam whistles, fog horns, rudders, rowlocks, boat lowering apparatus, steering gear, lamps, hammocks, pumps, anchors, cranes, capstans. winches, and similar paraphernalia have been the subjects of recent improvements, which, even if not always needed, yet prove how great is the mental activity in the shipbuilding world, which seems as little disposed to stagnate as the waves which it rules.

To know what an exhibition does not contain is quite as interesting as, and often much more useful than, a knowledge of its minutest details. There were limitations even to the collection, large though it was, under notice. One of the ob. jects asked for but not forthcoming was an automatic lifting apparatus, by means of which a.l kinds of coal might h "grabbed" or scooped up, shipped, or unshipped, in a way similar to that in which grain is transported. The system now in vogue of "whipping" coal, under which a large staff of laborers must be employed to fill baskets and other receptacl s with a spade, which are then drawn up by a steam crane, i : altogether too slow and costly for modern requirements. The apparatus required is one which shall take up swiftly and cleanly, and carry without loss, a mixture of slack and larg. and small pieces of coal. Another class, although of less practical importance, in which there were no exhibits, was that of submarine vessels, snch as Mr. Ericsson invented a few years ago. It was thought at that time that much use might be made of them in launching torpedoes against an enemy's fler \mathbf{t}, and in passing from one shore to another unexposed to the most violent storms which might disturb the ocean's surface. A third need is connected with boilers for launches, of which there were but very few shown. These are open to much im. provement, both in shape and in the nosition occupied by them in the limited hold of launches. The various stages of construction, and the relative values of steel and iron for ship. building, were also unrepresented.
Thoroughly complete, on the other hand, were the series of exhibits relating to diving, dredging, marine engines, steam steering gear, propulkion, life saving apparatus, boat lowering, pumping, rigging and refrigerating. Thore was also a fine collection of models, of the latest patterns of merchant steaners and men-of.war, lent by the Lords or the Admiralty and and by the leading shipbuilding firms. Among these were the Servia, a new Cunarder, long and narrow as an eel, the proportion between breadth of beam and length of keel beine so great that Captain Bedford Pim would stand aghast at it. The models of the Devastration and of the Belleisle-the latest types of ironclad and turret vesseis-were inspected with much interest. Under the category of curiosities rust be noted a model of the Eddystone Lighthouse, and, perhaps, a steam whistle, which sounded in all the notes of the musical scale, while as a somewhat novel feature was a lecture r . m in which exhibitors described their inventions, and well known scientific men lectured on points of technical interest.-Industrial News.

