Compound Quantities

Page 71

- 1. $1000 \div 100$; $1000 \div 10$; $1000 \div 100 \div 10$.
- 2. $1000 \div 1000$; $1000 \div 10$; 1000×10 .
- 3. 12×100 ; 15×1000 ; $21 \times 1000 \times 1000$.
- 4. $123456789 \div 100$; $123456789 \div 1000$; $123456789 \div 1000 \div 1000$.
 - 5. $8.56 \times 1000 \times 100$; 5.632×1000 ; 12468×1000 .
- 6. Expressed in metres these quantities are 14.6, 2.27, 1623, 1634000, then add.
- 7. Expressed in cm. these quantities are 567800, 13648.9, then subtract.
- 8. 12 Km. 5m. 8 cm. = 12.00508 Km., then multiply by 8×12 .
- 9. 103 Km. = 10300000 cm. = 64×1760 yd. \therefore 1 yd. = 10300000 cm. $\div 64 \div 1760$.
 - 10. 66000 m. in 3600 sec. = 66000 ÷ 3600 m. per sec.

Page 72

- 11. In 1 min. the train goes 1 Km. = 1000 m., which . \therefore = 20 spaces. \therefore 1 space = 50 m.
- 12. The man's height = 5 ft. $10\frac{1}{2}$ in. = 70.5 in. = $70.5 \div 39.37$ m. = $70.5 \div 39.37 \times 100$ cm.
 - 13. $29.5 \div 39.37 \times 1000$.
- 14. 10 m. = 1000 cm. In taking one-half of one part and two-thirds of the other we have taken one-half the whole string and one-sixth of the other part; but one-half the whole string is 500 cm. ... one-sixth of the other part is 100 cm. ... the other part is 600 cm.