$$q_1^* \cdot (-c_1) + q_2^* \cdot (-c_2) = E_I^* - \frac{(c_1 - a_1)(1 - \beta_1) \cdot (c_2 - a_2)(1 - \beta_2)}{(c_1 - a_1)(1 - \beta_1) + (c_2 - a_2)(1 - \beta_2)},$$

so the inequality is equivalent to

$$1 \geq \int_{0}^{\varepsilon} \left[\frac{1 - \beta_{1}(\varepsilon_{1})}{1 - \beta_{1}} + \frac{1 - \beta_{2}(\varepsilon - \varepsilon_{1})}{1 - \beta_{2}} \right] dF(\varepsilon_{1})$$

for all F. Furthermore, because of (3.8), (3.9), and (3.10), the function

$$G(\varepsilon_1) = \frac{1 - \beta_1(\varepsilon_1)}{1 - \beta_1} + \frac{1 - \beta_2(\varepsilon - \varepsilon_1)}{1 - \beta_2} \quad \text{for } 0 \le \varepsilon_1 \le \varepsilon$$

satisfies

$$G(0) = G(\varepsilon) = 1$$

and is strictly convex in ε_1 for $0 \le \varepsilon_1 \le \varepsilon$. Therefore, the inequality is true for all F.

Part (i) of Theorem 3.1 defines necessary and sufficient conditions for all violation to be deterred, similar to Theorem 2.1(i). To illustrate, suppose that $b_1 = b_2 = b > 0$, and assume $d_1 > d_2$ and

$$d_1 - d_2 \le (b + d_1) \cdot (1 - \beta_1) \ \forall \ b \ge 0$$
, i.e. $d_2 \ge d_1 \cdot \beta_1$.

Then, according to (3.21), p^* is a function of b given by

$$p^* = \frac{d_1 - d_2 + (b + d_2)(1 - \beta_2)}{(b + d_1)(1 - \beta_1) + (b + d_2)(1 - \beta_2)}$$

for $0 \le b \le b^*$, where b^* is defined by

$$\frac{d_1}{b^* + d_1} \cdot \frac{1}{1 - \beta_2} + \frac{d_2}{b^* + d_2} \cdot \frac{1}{1 - \beta_2} = 1.$$
 (3.25)

Furthermore, p^* satisfies (2.9), i.e.

$$\frac{d_1}{b+d_1} \cdot \frac{1}{1-\beta_2} \le p^* \le 1 - \frac{d_2}{b+d_2} \cdot \frac{1}{1-\beta_2}$$

whenever $b \ge b^*$. These calculations show that the optimal distribution of inspection effort achieves deterrence whenever deterrence is possible, as illustrated in Figure A3. Note also that, in general, p^* is determined only by the state's payoffs. For given "technical" parameters $1-\beta_1$ and $1-\beta_2$, and given values of d_1 and d_2 , the common punishment given by (3.25), $b^* = b_1^* = b_2^*$, represents the minimum punishment level necessary to induce the state to behave legally.