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(cr-a)(1-By)- (ca—az)(1-B2)

. (_ * (- = E; - ’
g1 - (~c1)+g3 - (~c2) = Ej (c1—a1)(1—Py)+(c2—an)(l-Ba)

so the inequality is equivalent to
> J‘ 1 —Bl(el) 1-By(e-g)
0 1- Bl 1- B2
for all F. Furthermore, because of (3.8), (3.9), and (3.10), the function

G(e,) = 1;?’;‘:”) + 1'?2_(‘;81)

dF (81 )

forOSEISE

satisfies
G0) =G =

and is strictly convex in €; for 0 < €, < & Therefore, the inequality is true for all F.
=

Part (i) of Theorem 3.1 defines necessary and sufficient conditions for all violation to be
deterred, similar to Theorem 2.1(i). To illustrate, suppose that b; = b, = b > 0, and assume
dy > d, and

di—dy £ (b+d;)- 1-B1)VDb 20, ie. dy 2d; . By.
Then, according to (3.21), p* is a function of b givenby
. _ dy—d;+(b+d;)(1-By)
C (b+d)-B)+ (b +dy)(1-By)
for 0 < b < b*, where b* is defined by

P

d; 1, d; 1 _,
b*+d;, 1-P2 b*+d, 1-B2 (3.25)
Furthermore, p* satisfies (2.9), i.e.
d, N Pt <l - d, 1
b+d;  1-PB, b+d, 1-B,

whenever b > b*. These calculations show that the optimal distribution of inspection effort
achieves deterrence whenever deterrence is possible, as illustrated in Figure A3. Note also that,
in general, p* is determined only by the state’s payoffs. For given "technical” parameters
1-P; and 1-B,, and given values of dy and d3, the common punishment given by (3.25),

b* = b} = b5, represents the minimum punishment level necessary to induce the state to

behave legally.



