$$b+b_1y_1+b_2y_1^2+\ldots+b_{r-1}y_1^{r-1},$$

where b, b_1 , &c., are clear of the surd y_1 . The corresponding coefficient in $F_2(x)$ is

$$b + b_1 z y_1 + b_2 z^2 y_1^2 + \&c.$$
 Therefore, $b_1 (z-1) y_1 + b_2 (z^2-1) y_1^2 + \&c. = 0$.

Since the surds present in this equation are surds occurring in f(p), and f(p) is in a simple form, the coefficients, b_1 (z-1), b_2 (z^2-1), &c., must (Cor. 1. Def. 9) vanish separately. But, since z is an r^{th} root of unity, distinct from unity, r being a prime number, none of the expressions, z-1, z^2-1 , &c., vanish. Therefore b_1 , b_2 , &c., must all be zero: which is inconsistent with the assumption that the surd y_1 is present in the coefficient selected. Therefore $F_1(r)$ is not equal to $F_2(x)$; and we proved that it has no common measure with $F_2(x)$. Therefore no term in (1) is equal to a term in (2); and all the terms, ϕ_1 , ϕ_2 ,, ϕ_{2n} , are unequal. In the same way it appears that all the terms, ϕ_1 , ϕ_2 ,, ϕ_{nr} , are unequal.

The terms, ϕ_1 , ϕ_2 ,, ϕ_{nr} , thus proved unequal, are the unequal cognate functions of f(p), obtained by giving definite values to the surds in F, [which, from the manner in which F was generated, are necessarily surds occurring in f(p), and framing the cognate functions without reference to the surd character of these surds. For, in framing the cognate functions, ϕ_1 , ϕ_2 ,...., ϕ_{nr} , all the surds in $F_1(x)$, except y_1 , were considered as definite; and no numerical multipliers (such as z_1 , z_2 , &c., in Def. 6) were affixed If F contained all the surds in $F_1(x)$, except y_1 , our point would be easily established. It may happen, however, that F does not contain all the surds in $F_1(x)$ except y_1 . Other surds may have disappeared from it, along with y_1 . Let t be one of these. if there be such: and let its index be I. Then, in virtue of the s values that may be given to t, the cognate functions of f(p), taken on a non-recognition of the surd character of those surds alone which appear in F, must include s groups of such terms as

$$\phi_1, \phi_2, \ldots, \phi_{nr}, \ldots$$
 (3)

In general, if t, t_1 , &c., be the surds in $F_1(x)$, besides y_1 , which are not in F; and if $\frac{1}{s}$, $\frac{1}{s_1}$, &c., be the indices of the surds t, t_1 , &c.,