## SUBTERIBANELA MBAT.

The following are the tomperatures of the ground in the foreman shaft, from the surface to tho dopth of 2100 foet, na ascertained by drilling holes not less than throo feet deep into the rock, and inserting a Negretti \& Zanmbra - slow aoting thermoneter (of the pattern adopted by the Under ground'lemporature Committe of the Britibh Ierociation, $^{2}$ and standurdized at Kont,) into tho hole with olay and leaving the thermomoter for twelve hours-not less than threo holes being tried at oach point:


It will be seen by the above that, although there is on the whole a steady increase of temperuture as depth is attained, the increase of temperature 18 not regular. For instance, the rock at the 400 level is two degrees cooler than at the 300 level, between the 400 and 500 level there is a differenco of eight degrees, While in other places an additional depth of
100 feet shows but a slight increase in the 100 feet shows but a slight increase in the perature $18105 \frac{1}{2}$ degrees, while at the 1900 it is but 100 degrees, an increase of but one half a degree. This differonce is undoubtedly orring to the character of the rock at the points where the holes were made ; therefore it would be of great interest to have in connection with the temporature, 2 description of the rock, not only one kind of rock, but also the nature of the same, whether carrying much lime, ggpsum or iron pyrites. It would probably be ghown that where there was muoh lime there would be in increase of heat not warranted by the increased depth, and the reverse where lime was absent.-ITirginia City (Nov.) Enterprise.

## A WARII SPOT IN THE SNOW.

While Mrr. William L. Reid, of Craig's Creek, Va, was hunting on the mountain in his neigh. borhood recently, and a heavy snow lay on the ground, he came across a spot about ton or fiftern feet square, from which the snow had melted, and, laying his gun on the ground to minutes some ice that had frozen hard upon it also melted. Upon examination he found that a slight curront of warm air was rising from the ground, and that the ground also was warm. He also noticed that the limbs of the trees overhanguy this spot was filled with icicles insteaic of snow, caused by the warm atmos. phere melting the snow in the day, probably, and freezing at night. Some days after this discovery Mr. Ried again visited the spot, after another heary anow had fallen, and found the same condition of things existing. He also noticed that the trees surrounding the spot had been blazed, from their appearance, many years ago as if to identify the place.- Fincasile Herald.

## WLND AS A Motod.

Wind will, probably, always bo employed more or less oxtonsively as a motor. lls uni. versality, the fact that no expenso is involved in producing it and the simplicity uf the machinery neoessary to make it availablo are poculiarities which have a tendency to make It a popular sourco of mechanical porver. On the ocean, it can scarcely bo supersedod by steam, in all those cases where quick passages aro not requised, and long distances lave to bo traversed. On the land, it will continue to be employed whero work is to be performed Which requires but little personal oversight, suoh as the pumpiag of water into reservoirs,
and in a great varioty of cases, whero the and, in a great varioly of cases, whero the
least pousible cost of production is of more moment than the quantity manufactured.
It is true that nuch etudy is being given, just now, to the devising of appliances by which agonts, which have, as yet, been of no practical valuo in the propulsion of machinery, may bo utilized. Heat, eleotricity, gas formed by the combination of gases liberated from water and naphtha and compressed air aro all being experimented with in this connection, in the hope that the future is to develop ma. chines which may replace the steam engine in their porrer and adaptability. It may, however, be an open question whether inventivo genius might not be advantageously employed in efforts to construct suoh a combint tion of the mechanical forces as would render the agency of wind a more important element in the mechanical industries than has been the case hitherto. It appears to have been accepted by many as conclusive that there is but little, if any, further progress to be made in putting to practi ral account this power which Nature has furnished at our hand, but When we consider the great adrance which has been made between the ungainly vind. mills of three centuries ago, which performed their work in the most amkward manner and whose products were of the most primitive description, and those which nory are con. structed upon scientifio principles, and when we recall the unvieldy and misehapen hulks of the primitive navigators which only apread one triangularly shaped sail to catch the wind, When it bler in the same direction in which they wished to advance, and compare them to the clipper ships of cur time, we seo how much hes already been accomplished in making the wind subservient to our interests, and, at the same time, it furnishes an incentive to make it still furthor conduce to our welfare. Some attention appears, however, to be given to this matter, and we notica that M. L. Purpur, of Paris, has recently invented what he calls the "Tourbillon" Wind-Motor. This is a device by which the necessity of setting the machine according to the direction of the wind is avoided, but by aningenious arrangement of screens the wind is directed from whatever quarter it blows and at thesame time increases its intensity, so that, rhile other mills in a gentle breeze are useless, those which are provided with this contrivance are equal to work of two or three horse- power. When the irregularity of the wind by this or any other invention has beon reduced to its minimum, one of the most serious objections to its use mill have been overcome. Whatever the developments of the future with regard to tho use of the other forces, we have no doubt that wind will continue to vecomo more and more serviceable to man as a motor.-Industrial World.
-" People who have nothing else to talk about, talk of the weather," is a rery common saying. But it is just such people who know least about it. That individual who talks so freely and loudy about the folly of "weather predictions" probably cannot tell you which Why the wind is blowing; and less likely the freazing point of water - certainly not that of freozing point of
Mercury or Spirit.

## The Lievel of Lake Ontario.

Says the Odwego Palladum:-"Somo timo ago there was printed a tabulated atnte. ment dosigned to show that tho water in Lake Untario is undergoing a gradual and permanent fall, whereby Toronto harbour is being damaged so that larger expenditures will be necessary to extend the docks into deoper water. Noo of the causes assigned was the deopening of the channel of st. Lawrence kivor at the Calops Rapuds. Major MoFarland, of the United States Engineers, Uswego, became greatly interested in the subjeot, and undertook an investiga. tion, upon which reports of an exhnustive charactor havo been mado by Major MoFarland and Lioutenant-Colonel C. B Comstock. The latter, in his report, states the character, ex. tent and effect of the work by the Cina. dimn Government at Galops Rapids. Forwarding his report to the Chief Engineer with his conclusions, Major MoFarland says that the tracing accompanying it shows that the lake was as low in 1846 and 1848, thurty years beiore the Gulops improvements were begun, as it was last year, and it is necessary to look somewhere else for an explanation of the phenome. non than to the rapids. The report shows that the channel making through the Galops Rapids is to be 200 leot wide, with a depth of 16 feat on tho uppor bar and 17 feot on the lower bar. The hydraulic mean depth of this part of the channel north of Galops Igland is 10 feet. The mean alope of the river is that assunied by General Comstock-. 00002 , but at the Galops Rapids it increases to .00185 . The reduction oflevol of the water surface due to these dimensions is but 41 inches at the lowor bar, while at the upper bar it becomes imperceptible, and the improvement cannot possibly affect the level eilher of the Upper St. Lawrence or Lake Ontario."

## Hed Snow.

At a meeting of the Microscopical Society, held Monday evening, Dr. Harkuess presented a bottle of "red snow," which he gathered last June on the Wasatch Mountaus. The red snow was found ou the north side of a spar which rose about 10,000 feet above the sea level. When fresh, tho snow had the appearance of being drenched with blood, as though some large animal had been killed. The red snovis is caused by the presence of a onc-celled plant called protoccus sivalis, which reproduces itself by subdivi-sion-that is, the cell divides itsolf into several new cells. This is done with great rapidtty, and a few cells lodged in the enow, under favorable conditions, soon will give it the appearance called red snow. It was remarked that the phenomenon of red snow had been observed from the carliest time, as Aristotle haid a passage wheh is thought to refer to it. The sub. ject was, however, lost sight of until brought up by the investigation of Saussure, who fouud it on tho Alps in 1760 . He made chemical tests which show. ed him that the :ed colour was due to the presence of vegetable matter, which he supposed might be the pollen of some plaut. In 1819 an Arctic expedition under Captain Rnss, brunght some sprecrmens from the clifs around Batfin's Bay, and they wemesaminined by eminent butanists, sorao of which fulstook the nature of the plant, and there were long, discus. sions as tu its proper classification, some boldang it to be a fangus, somo a lichen, butit was finally set at rest as one of the unicellular alge. It is of interest also that some of the carly examiners prosounced the colour due to snimalcules, bnt this was disprov-ca.-Sar Francisso paper.
A sixth of France (including Corsica) is under wood, but, notwithstandirg this, an imacnse amount of timber is aunually imported into the country. In 1824 the Nancy School of Forestry was instituted, and a nerr code of forest larss was adopted in 1827. The fact has of late years been recognized that the floods which have proved so terribly destructive in France have bean largely due to the absence of trees on the mountain sides. A forest acts both mechanically and hydrographically; in the former case by preventug auy large body of water from collecting, and as a sort of permanent floodgate $;$ in the latter by the trees absorbing a vast deal of moisture.

