Smelter Process				S0; Control System						
Technology	Relative Cost ³	Technology availability	Energy consumption ⁵	Technology	SO2 Control %	Estimated Cost ⁶	Technology availability ⁷	Operating reliability	Energy consumption	By-product
Fluid-bed roaster electric furnace converter	100	High	Very H1gh 106-156	Acid plant on roaster, elec- tric furnace, converter plus FGD system on weak gas streams	To 95%	44	Med •	Med .	Med •	Sulfuric acid and sulfur compound for waste disposal
Direct furnace smelting, conver- ter (Inco, Outo- kumpu, Noranda)	80	High	Low 60-80	Acid plant on flash furnace and converter	94-95%	40	High	High ⁴	Low	Sulfuric acid
Direct frunace smelting, conver- ter (Inco, Outo- kumpu, Noranda)	80	High	Low 60-80	Acid plant on flash furnace plus FGD system on weak gas streams	To 95%	43	Med •	Med •	Med •	Sulfuric acid and sulfur combound for waste disposal
Continuous smelt- ing (Mitsubishi, Noranda)	135	Med. ¹	Low 60-80	Acid plant	98-99%	33	High	High	Low	Sulfuric acid
Hydrometallurgy	135	Low ²	High to Very High 100-200	?	To 99.5%	?	?	?	?	Elemental sulfur

TABLE A.4.1 (continued) Copper/Nickel Smelter SO₂ Control Systems

1 Can be used for <u>clean copper</u> concentrates
2 Problems with precious metals recovery, limited operating experience; could be considered for some special cases
3 Capital cost relative to a base case facility of calcine fed reverberatory furnace
4 Capital cost relative to a base case facility of calcine fed reverberatory furnace
5 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
6 Capital cost relative to a base case facility of calcine fed reverberatory furnace
7 Capital cost relative to a base case facility of calcine fed reverberatory furnace
8 Capital cost relative to a base case facility of calcine fed reverberatory furnace
8 Capital cost relative to a base case facility of calcine fed reverberatory furnace
8 Capital cost relative to a base case facility of calcine fed reverberatory furnace
8 Capital cost relative to a base case facility of calcine fed reverberatory furnace
8 Capital cost relative to a base case facility of calcine fed reverberatory furnace
8 Capital

Capture of off-gases from nickel converters and electric furnaces not yet developed

6 7

Smelter energy consumption is relative to base case of calcine fed reverberatory furnace taken as 100% Estimated cost per tonne of SO₂ removed in 1980 U.S.\$ High means technology is used at a number of smelters; medium means technology is used at a few smelters; low means technology is used at only one smelter or is being evaluated at a pilot scale facility

1

Source: Section C.2. References 1, 3, 4, 15