of this portrait, for all Mr. Billings's early associations were connected with Ottawa, the fossils contained in its rocks were the first objects of his scientific study, and, although much of his work was afterwards done in Montreal, the collections to which his time was devoted have come back to be preserved here. Billings was one of a remarkable triumvirate connected with its initiation and early work of the Canadian Geological Survey, all well in the van of scientific progress at the time, but each working along his own lines. Logan and Hunt were his associates, but his scientific eminence was less recognised in Canada because his work was less obviously connected with the economic problems that the Survey had set itself to solve. His audience was not so much in the little Canada of that day as in the studies and laboratories of Europe and the United States. The accuracy of his observations is evidenced by the permanence of his reputation among those palæontologists of a later generation that has arisen since his day. It is not often that, nearly twenty-five years after the death of a man whose time was devoted to purely scientific pursuits, interest in his life and work have been maintained in such a way as to render a memorial like this possible, and I may therefore close by again congratulating both those who initiated and those who have aided by subscribing towards the production of this portrait. ## POWERS OF ADAPTATION IN FISHES. By Professor Edward E. Prince, Dominion Commissioner of Fisheries. Ottawa. Fishes are frequently classed as fresh-water species and marine species, but there are many which occupy a kind of neutral position, and have the habit of spending part of their time in fresh water and part in the sea. The salmon, sea-trout, smelt, striped bass, sturgeon, shad, &c., are familiar examples, many of them being anadromous, and ascending into fresh water for spawning purposes, while a few are catadromous, like the eel, and deposit their spawn in the sea. The power of adaptation