3.-Poiree's Formula.

$$
\begin{aligned}
y= & \left.Y-i s+\frac{\overline{i s}}{4 Y}\right)^{2} \\
= & \left.1.75-1.75+\frac{\overline{1.75}}{4+1.75}\right)^{2} \\
= & 1.75-1.75+\frac{3.0625}{7} \\
= & \cdot 4375 \text { feet. Height of backwater at Robey Street junction. } \\
& \text { 4-Dupuit's Formula. }
\end{aligned}
$$

$\log y=\log Y-\frac{i s}{.77 P}$; in which P is the mean depth between the points.
$\log y=\log 1 \cdot 75-\frac{\cdot 000025 \times 70000}{77 \times 23}$
Reduced to incher gives-

$$
\begin{aligned}
\log 12 y & =\log 21-\frac{1.75}{1.77} \\
& =1.3222193-1=0.3222193 \\
\therefore \quad y & =\frac{0.3222193}{12}=0.027 \text { feet. Height of backwater at Robey Street junction. }
\end{aligned}
$$

(1) By Guilhelm's Formula... $y=0.35$ feet.

(4) By Dupuit's " \quad.. $y=0.027$
$=\frac{4 \longdiv { 1 \cdot 3 1 4 }}{0.3285}$

Tolfind the probable errors by the method of least squares, assuming each of the formulas to have equal weights.

No. of Formula.		Depth of Backwater.	Difference from Mean.	$\begin{gathered} \text { Square } \\ \text { of } \\ \text { Residuals. } \end{gathered}$
1.		0.35	-0.021	0.0004
2.		0.5	-0.171	0.0292
3.		0.437	-0.108	$0 \cdot 0117$
4.		0.027	+0.301	$0 \cdot 0906$
	Mean $=$	0.3285	$\left[n n_{1}\right]=$	0.1319

Probable error:-

$$
\begin{aligned}
r & =6745 \sqrt{\frac{\left[n n_{1}\right]}{m-1}}=6745 \sqrt{\frac{0 \cdot 1319}{4 \cdot 1}} \\
& =6745 \sqrt{0044}=\cdot 6745 \times \pm 0 \cdot 21 \\
& = \pm 014 \text { feet. }
\end{aligned}
$$

Probable error of Arithmetical Mean :-

$$
\begin{aligned}
r(x) & =\frac{\cdot 6745}{\sqrt{m}} \sqrt{\frac{\left[n n_{1}\right]}{m-1}}=\frac{\cdot 6745}{\sqrt{4}} \sqrt{\frac{0 \cdot 1319}{4-1}} \\
& =\frac{6745}{2} \sqrt{0.044}=\cdot 3372 \times \pm 021 \\
& =\div 0.071 \text { feet. }
\end{aligned}
$$

TANK ILLUSTRATIONS.
Suppose a tank 5 feet long, and 2 feet wide, with a depth of water of 10 feet, receives a constant supply of 3 cubic feet per second, what will be the diameter of a round orifice in the bottom capable, with a constant head of 10 feet, to discharge 3 cubic feet per second?

Let $D=$ Discharge in cubic feet per second.
$h=$ Depth of water or constant head.
$A=$ Area of orifice in square feet.
$c=$ Co-efficient of discharge.

