material of a yellowish-brownish or grey colunt, rich in diatomacea, and, polythalamia, annehds, crustace and mullusca were fund at these depths, -16 .

- Animals of small stature are by no means proportionally the weakest. Pliny in his "Natural slistory, asserts that, in strength, the ant is superior to all other creatures. The leagth and herght of the fleas leap also appear quite out of proportion to sts weight. No rery definte conchision, however, had hitherto been armved at. M. Platean has sethed the question by employing exact selenee as the test lusects belonging to different syecies, placed on a plane surface, have been compelled to draw gradually increasing weights.

A man of therty, wephing on an average a hundred and thirty pounds, can drag, according to lagnier, ouly a hundred and wenty pounde. The proportion of the weight drawn to the weight of his body is no more than us twelve to thirteen. A draught horse can exert, only for a fer instants, an effort equal to about two-thirds of his own proper weight. The man, therefore, is stronger than the horse.

But, according to M. Ilateau, the smallest insect drags withont ditticulty fire, six, ten, twenty times its own weight, and more The corkchafer draws fourteen times its own weight. Uther colcoptera are able to put themselves into equillbrium with a turce of traction reaching as high as forty-two times their own weight. Insects, therefore, when compared With the vertebrate which we employ as beasts of draught, have enormous muscular power. If a horse hed the same relative strength as a donacia, the traction it could exercise would be egnivalent to some sixty thousand pounds.

To ascertain its pushing power, M. Platean introduced tho insect into a card-paper tube whose inner surface had been slightly roughened The creature, perceiving the light at the end through a transparent plate which barred its passage, advanced by pushing the latter furward with all its might and main: especially if, excited a little. The plate, pushed forward, acted on a lever connected with au apparatus for measuring the effort made. In this case also it turned out that the comparative. power of pushing, like that of traction, is greater in proportion as the size and weight of the insect are small. Experiments to determine the weight which a fying insect can carry were performed by means of a thread with a ball of putty at the end, whose mass could be augmended or reduced at will The result is, that during fight, an insect cannot carry a weight sensibly greater than that of its own body.

Consequently, man, less heavy than the horse, hias a greater relative muscular power. The dog, less heavier than man, drags a comparatively heavier burden. Insects, as their weight grows less and less, are able to drag more and more. It would appear, therefore, that the muscular force of living creatures is in inverse proportion to their mass.- All the Year Round.

- M. Terrell, who visited Palestine in 1825, has addressed a note to the Frencl Acauemy of Sciences, on the chemical composition of the waters of the inland galt lake. It has generally been helinved there were no liting creatures in it, but the author says he saw, it one spot near Sodom, a number of small fish that seemed to thrive well. The fullowing is a brief of his observalions:-

1. The density of the waters of the Dead Sea increases with their depth.
2. Their composition and concentration are likerwise rariable; thus samples taken five miles cast of Waddy Mrabla contain fuar times wore calcium than those five miles cast of Ras Teshka, which contain twice as much soda as the former.
3. Samples of water from north of -Sodom, in that part which forms a lagoon, contain more chloride of sodium (common salt) than chloride of magnesium, which explains why fish may live there.
4. The bromides alone seem to be concentrated much more in depths exceeding 300 zectres.
5 The lake contains no iodine or traces of phosphoric acid, and but small portions of sulphates.
5. The residue, after craporation, exaunined with the spectroscope does not show the presence of the rarer alkaline metals, lithium, cossium or rubidum. - Exchange.

- Mr. Grove's doctrine of the Continuity of the Universe has receivel a brilliant illustration during the past month. in the presence of many thousands of astonished witnesses. The "worlddust," which, he says, fills up the vast deserts r interplanetary space, revealed itself in unexpected splendour in the wonderfill meteoric display of the night of the 14 th of Norember. Astronomers had foretold the apparition, but fers persons had any notion beforehand of the wealth of glory in which it actually manifested itself. The sky was happily clear at the proper noment-a rare and choice coincidence for an event that happens on a Norember night once only in thirty-three years-and for more than two hours the heaven was alive with fiery messengers. According to the most carcful reckohing-that of Greenwich Observatory-seven thousand shooting-stars were counted between eleren and fire coclock, and of these four thousand trere obserred between one and two. It is not possible as jet to collect the scientific results of this display. The existing theory with regard to these bodies,
it is perhaps neepless to say, is that, besides the planets, the sun is surrounded by a multitude of small bodies, "hich are gathered into sereral distinct riugs revolving round him by the force of gravitation. The wellknown appearance of Saturn's rings may help the imagination to conceive this condition of things ; bearing in mind that Saturn's rings lie all nearly in the sume phane, and thas expose a large mass of aurface for the reflection of light, while those of the eun are inched to une another at diferent angles, and are only visible to us when our planet in its annual course intersects une of then. For then their speed is arrested by contact with the upper regions of anatnosphere, which, thin as it is at that distance, from fify to cighty miles high, is yet able to ophuse a scasible resistance to their motion. The consequence is, that this notion-by the law of the currelation of forces-is transfurmed; wholly or partially, into light and heat. And as these bodies enter our atmosphere with an average velocity of thirty-five miles per secomd, it is casy to sec that an enormues quantity. of light and hent will be generated by its arrest and destruction.-Sducational limes.
-TLe licader dratws attention to a remarhuble opiaion and theory of Sir John Herschel's with regard to the nature of those curious objects discovered by Mr. Xismyth on the surface of the sun, and generally called, from their peculiar shape, "" willow leaves." We believe Sir John first propounded this theory in an aritele on the sun, published in (iood "ords. but it does nut seem to hare been nutived by many astrunomers. However wild the hyputhesis may appear, it hats just received a further sanction from ts cmment author, by its republication in his new book of Famblar lectures. Sir John says, "Nothing remains bit to consider them [the su-called willow-leaves| as sepmrate and independent shects, flakes, or scales, having some sort of solidity. And lhese flakes, be they what liey unay, and whatever may he said about the dashing of meteoric stones into the sums atuosphicre, dc, are cridently the anamedtate sources of the solar laght und heut, by whatecer mechanisu or whatever processes they may be caabled to derelupe, and as it were elaborate these clements from the busum of the nun-luminous fluid in which they appear to Hont. Looked at in this puint of vici", we cannot refuse to regard them as organasms of sume peculiar and anazing kind, and though it would be too daring to speak of such organization as partaking of the nature of life, yet we do know that stal action is cqmpetent to derelope both heat, light, and clectricity.". Strange and stathing as is such an exphanaion, yet scientific men will remember, that when we knew as little about the cause of the black lines seen in the spectrum of the sun, as we now know about these appearances on the sun itself, Sir John Heeschel sugcested in 1833, that rery explamation which was the foundation of the memorable law announced by the German philosopher, Kirchoff, in 1859, a law now universally accepted as affording a perfect solution to the long-standing puzzle of Fran hofers lines.-Ih.
- The constantly increasing price of rags has led fapers-makers, for some years past, to turn their attention to the discovery of other materials suitable for paper stock. All hinds of plants, from those which grow near our own door to the luxuriant growths of tropical regions, have been experimented ou with but partial success; but it now appears probable that for the future our main source of supply will be the iorest. It is at Icast a century, und we do not know how much longer ago, since paper was made experimentally from wood, and, notwithstanding repeated improvements, the requirements of cost and quality have not until recentls been met. The manufacture of nood paper is now, howerer, an accomplished fact. There are two large establishments near Philadelphia where it is carricd on. In one of these a paper contsining 60 per cent of wood pulp is turned ont ; and in the other, which is on an immense scale, an excellent paper for printing purposes, composed of 80 per cent. Wood and 20 per cent strar, is made. The layger and more successful establishment is capable of turning out from 24,000 to $30,000 \mathrm{lbs}$. of pulp dailg:- 10 .
-A correspondent of the London Duilier says: "From several ycars" obscrvations in rooms of rarious sizes, used as manufacturing rooms, and occupied by females for trelve hours per day, I found that the workers tho occupied th se rooms which had large. windows with large panes of glass in the four sides of the room, so that the sun's rays penetrated through the room during the whole day, were much more healthy than the workers who occupied rooms lighted from one side only, or rooms lighted through very small pancs of glass. I obserred another very singular fact, viz: that the workers who ocenpied one room were very cheerful and healthy, while the occupants of another similar room, who were employed on the same kiud of work, were all jacliued to melanchols, and complained of pain in the forehead and ejes, and were ofien ill and unable to work.
Upon examining the rooms in question, I found they were both equally well rentilated and lighted. I could not discover anything about the drainage of the premises that could affect the one room more than the other; but I observed that the room occupied by the cheerful workers was wholly whitersshed, and the room occupied by the melancholy workers was colored with yellow ochre. I bad the ycllow ochre washed off, and the ralls and ccilings whitewasbed. The workers erer after felt

