

Duncan's Improved Hay Elevator.

Ayono the implements at the Proviacial Exhibition we noticed a very simple bnt apparently efficient hay elevator, which was shown at work, and so far as we conld judge under the circumstances, seemed to be very easily manipulated and to perform its office thoroughly. The invention is Mr. Duncan's, and rights to manufacture, as will be seen by advertisement, are sold by Mr. Mann, of Port Dover.

The accompanying illustration slows the appearance and construction of this implement. The working gear, represented by the dotted lines, is enclosed by tro hands of iron, or one band bent into a loop at the top for the insertion of the hauling rope, and uniting at the other extremity in a sharp point to be driven into the hay. The weight of the enclosed bar throws the point of the beard up so that it offers to impediment-to the passage of the fort into the mass of hay to be elevated; and the meight of the Lay itself presses the beard down hall way, where it is retained in position by the spring catch at the upper end of the inner bar. By pulling a rope rith an easy and slight jerk, the hold of this catch is detached, the weight of the hay will then force the beard completely down, and the load on the fork is liberated. The implement appeared to work well, and does not seem liable to be soon disarranged.

We have been furnished with a certificate from a number of farmers and others in the Tornship of Woodhouse, who have used this new fork, and testify to its efficacy and confidently recommend it. Now that labor has become so scarce, and rages so high, erery calcient labor-saring contrivance is a valuable boon to the farmer, and a cheap and good horse hay fork, which this appears to be, is not the leastimportant of such useful inventions.

Structure and Growth of Stems.

Is a recent number of the Cavada Farmer a short account was giren of the roots of plants; the subject of the following remarks is the structure and growth of the stem.
For the clearer explanation of the matter, it may be necessary, perhaps, to recapitulato briefly What has already been said in regard to the germination of seeds. If the reader will examine any seed in the act of germination, ho will find the rudiment or emblyo of the future plant in the form of a slender stem, one or tro more or less feshy leaves or cotyledons, and between these seed 'saves, when there are tmo, or at tho base when there is only one, a small bud. In germination, this stem, which is technically called the canllcle, increases in leogth uatil it pushes the tro seed leares above ground, while it
sends out roots from the lower extremity. The little terminalbud, or plunule, then expands:nd developes another leaf or pair of leaves, with a stem, which goes on lengthening so as to raise the new leaf or leares some distance above the first. The subsequent growth of the stem consists merely in repetitions of this process. Hence the summit of every stem is always occupied by a bud. A bub is also produced in the upper angle formed by every leaf with the stem. This angle is called the axil; and buds occurring in this sitnation are called axillary buds. The derelopment of these buds gires rise to branches :

and the growth of those branches proccels in a maneer precisely similar to that of the original stem. The general character and duration of these parts form the distinctive features of the popular classif cation into trecs, shrubs, and herbs. When the wholo is perennial and the main stem forms a distinct trunk, a treo is formed; and when the distiuct trunk is wanting, the principal branches springing up in a bushy manner close to the ground, the plant is called a shrub; whilo, if the stem is but of ono year's daration, though the root may be perennial. the tern herb is applied.

The nutriment of plants-principally water, containing carbonic acid and ammonia in solation-is chiefly absorbed by the roots, and is thence narried through the stem to the leaves, where it undergoes a change under the influence of light, and is fitted to become part of the living vegetable organism. The claborated sap then descends, and by some wonderinl process, the nature of which is unknown, is converted into wood. That the nutritive fluid descendsfrom the leares to form the wood is erident from several considerations. For example, the growth of new wood, other things being equal, is directly proportionate to the exient of foliage, and the growth of the treo begins and ends with the vitality of the leares. In endogens (a class of plants of which me shall speak presently) the new formation can be traced from the base of the leares downwards. Again, if a bandage be tied round a branch, a swelling will take place above the ligature, vecause the nutriment descending from the leaves will be there arrested, and the pari in question will receive an undue quantity of nourishment.

The mode in which the new wood is arranged in the stem gives rise to two general types of structure, on :ihich two great classes of plants hare been founded. In all those plants in which there are two seed-leaves, or cotyledons, the wood is arranged in a series of concentric layers around a sentral pith, and between it and an, external bark. Eac'l of these concentric layers represents the growth of one year, and was formed within tho bark and outside the circle of the prefious gear's wood. This mode of structure is termed the exogenous strature, and plants in which it occurs are called exogens-outward growers-or dicotyledons-the latter ramemeaning plants with two cotyledons. Plants of this class resemble each other not only in the number of their seed-leares and in the structure of their stem, but also in many otber important particulars. The veins of their leaves are spread out in numerous ramifications, and form a net-rork, and the parts of the flowers generally occur in circles of five or some multiple of that number-sometimesin fours orsevens, but very seldom in threes.

All the large trecs, and most of the lerbs, of temperate climates belong to this class. An illustration of erogenous structure may bo easily obtained by cutting across a stick of any ordinary rood, as maple, when the layers of wood will be seen in the form of concentric rings. The section will also show lines of communication between the central pith and the outer circles. Theso aro called medullary rays, and eatablith a connection between the central colama of cullular substance and the leares and lateral branches. Their integrity is essential to the life of the plant. Outside of the roody cirales, in steras of the exogenous structure, is a sovering of bark, which, like the main column of rood, also increases by the Iformation of anaual circles; but these are deposited

