raw matertal will go to increase the comfort and preserve the health of the people, while another part, "which comes from the Manchester spinning mills in hundredwcight bales, and costs about f. 30 per ton," may deal out deseruction to life and property whole. sale. Almont as though intended to point out the astonishing contrasts of the textile, and as if to show that cotton centains remedial as woll as destructive elements, it was lately announced that the root of Gossypium hrazaceum is used and very strongly recommended by R assian practitioners as a powerful hamostatic. A lisuid extract of the root is said to have suceessfully stopped harnorrhage where all other remedies had failed. Thus while colton in one form might cause cruel wounds, another application of it miglt: be used to stameh blood, and a third preparation be administered internally to contract the hilond vessels and prevent exhaustion.

SPIDER SILK.

A tremendous amount of misplaced energy has been spent by one man after another in the endeavor to bring spider threads within the scope of textile manufacture. Reaumur touched this side of the silk question, as he did that of artificial silk, and he had the gratification of inspecting and reporting upon to the leading body of sivants of his day, a pair of mittens made by a M. Hon from the silk of the halabe spider of Madagnscar. Halabe silk is said to be well adapted for weavm_{h}, and it was from it that the Creoles of the Mauritius made the highly elegant pair of gloves which they presented in the days of her glory to the limpress Eugenie. Towards the end of last century a di. Rolt introduced a little machine for reeling the silk as the spider spun $1 t$, and presented to the Society uf Arts in Lundon a thread of 6,000 metres in leugh, whtained in two hours from 22 spiders. A couple of years ago. siys the Textile Manufacturer, another Frenchman named Camoue found that the silk. producing capacity of the halate commenced at the rate of almut too metres, but soon increased to alont 15° metres per hour. The same genteman made some minute experiments to determine the streng(b) of the thread. and found that at a temperature of 17°, with a humidity of eis", it was able to bear a weight of 3.26 groms, without hreaking. It will be seen, therefore, that in the matter of strength it compares not badly with mulherry silk. Thecommon house spider has not escaped the finichan experamenter - who, by the way, is usually a Frenchman. Stockings and gloves have been manufactured from the silken bags within which the female sphder depusits her ova. Hut the dificulty of collecting these egs-bags, and the still greater difficulty of inducung the fiefice lutle spermens to live tofether in unison, swon put a step to all the efforts to control and utilize the house spluts. Inother objection lies in the wiant of strength in the fibre an objection which cannot, as we have seen. be adiaticed against the halabe. Indeed, we are ussured that it is onily the incorrigible laziness
of the natives of the districts where the spider abounds that prevents its utilization for manufacturing rurposes. We have it on the word of M. Anton Duminesq that a material has been obtained lyy the labor of the common ermine moth that is so strong and light as to have been actually made into and worn as a lady's neckerchicf. Again, spider silk of a very excellent kind is formed on sticks in the North-west Provinces of India by nephi. leugys malabarensis. Yet again, and in conclu. ion, an Englishman, by name Stillbers, succeeded in 1890 in maling a cloth of spider's web which he utilized for surgical purposes. He used tropical spiders only, and most of them lie obtained from Africa and America. The stuff he obtained was of a texture resembling ordi. nary silk, but rather thick and stiff. The natural color was a by-ro-means attractive grey, but the bleaching process removed this defect, and the roughness was obviated by the common process of softening, which made it brilliant as well as smooth.

For Tue Canadian journal of Fabrics

WORKMAN TO "SUPER"

> FY \&. DAMON RICE, MEDFORD, MASS.

11.

Management of the Spindle Bands.-The making and using ot the spindle bands of a spinning mule form one of the essential parts of the mule fixing business. The best of adjusted mule heads will not work effectively if the spindle bands are too tight, too loose, or otherwise unt of order. The tracks of the mule carriage may be uniformly set, the driving belts may be just about r : ht, and all the moving parts of the head motion and its connections may be set according to the latest of improved methods, yet bad work will result, even if all these things are right, if the spindle bands are not right. The care of the spindle band falls upon the attendant of the machine to a great extent, but it also falls to the duty of the fixer to see to it that the bands are kept in proper shape. In the first place, good bands are needed. There are a number of ways in which bands can be made now, and all are fairly good. Probably the most common method of producing prac. tical bands consists in the use of a home-made banding machine, such as is shown in Fig. I. This drawing is a top view of the affair, representing the parts seen when looking directly down upon them. But a single band is made at a time, yet the work is quickly done and a good band is made, only that it is not endless, and therefore must be spliced by the spinner.

As it may be necessary for the fixer to build one of these banding machines some day, perhaps an account of the method of putting the parts into shape may be beneficial. First notice the framework, which can be made from wooden pieces, and bolted together and fixed upon a stand near some driving pulley. Then procure an ordinary mule spindle, and have the point heated and bent over in the shape of a hook, as represented by E, in the spindle, i. Then a shafting must be put in with a fast and a loose pulley, 13 . A

