Gan of our iblatrations repurom, the broper form in which to construet a round sach; whike the other vibows tho of an oblong form oan perfec'ly completed, and the other in promess of con-trametion. The site selected should be porfectly dry; or. if it must be in some spot liable to become damp, a treuch, of ten or twelve inches in depth. ought t) be dug roumd it. In such cirumwtaness, howive r, a hay stand constructed of wool, and raised oa pillars, a little abore the ground, ought to be provided. I're. suming that a dry situtaion is procurable, the botom of the stack may be formed of the required -hape and extent, with ar outline of stones or wood, as convenient. Its whole surface shoula than be conered to the depth of twelve inches with branches and uraw. rails. or some other material which will jruerat all contact with the ground, and thus provide against the tendency of the hay to gathes moisture. The width, of diameter. as the case may lee. shonh not exceed fifteen feet, in order that the cir may the better penetrate, and thereby olviate the liability of the stack to heat. from the effect of the sacelarine fier mentation which is always genirated, arel continued for a short time, in a newly built hay-stack. In ubtong stachs it is better to consmact tia site of coasid rabhe length, for no harm accrues aldiough the stach in any year does not occupy its entine length. The buiding process, when neatness of finish and regular form ari aspired to. requires to be condacted with care and steadiness. In large Cngligh farms, the post of stacier: invarially belongs to the most skilful workman, and the terul's are geacrally models of finish and symmetry.

Ther oticher should have, at least, one assi-indito receire t!e lhay from the team and hand it to the posito: required. The builling should be commenced at the midule of the sit - and gradually evanded to the 0 a sille, thking care to sprede each suceessir. layer regulaty and uniformly orer its entire surfice. The waggon should be drawn as clo-e as posible, not to intrefere with the construction of the side aijacent, and the person forking the bay from ir saosall be instructed to throw each forkful as nearly to the middh. wf the stach. where the assi-tatat stand , as practicable. linles; this prec:ution is observell, the spot Where each forkfu! falis will be more comprissed than ia other places, and when the stack whbil les the shape will be irregular and contoited. The assistant should stand weacily and firmiy when receiving the load from the waggon, and hand each forkful to the nost convenient place to be reached hy the stacker. who tuabes eacil dupusition with a slaking action, in order to :ear all lampas asunder, and reader the whole tevenre undarm and rigen. The midne of the stack sho.hd be bept we.l filed and somewhat higher than ine sides, and, after each toad bas been received, the 'acire": and his ansistant should walk slowly and reguh..rig overits entire surface, without approaching too closely to the ousside edge. This precaution inknere the hay being of unifora density, and prevents it from slipping. The outside stalis should also be rarefally pulled, till its surlace presents the appearn:see of a clothes-brush. After the body has attained fourteren feet in leight. the heading is commenced by gratually narrowing the breadth on each side of the raves or ridging. The stack is then topped out, and - f.w ropes are thrown over the ridging and fastened. :. parent the wind blowing it off. The stack is then allowed about two weeks to subside, which it w:il do to the extent of some two fect. It ought then to receive a few additional layers on the top. from tire pullings or dreasings of the sides, till it shall have been, completely shaped. When it should be well thateled and thotoughly necured by ropes. The procress just deseribed will apply to either oblong or cound atacks ; and our illustrations exhibit the perf.ct appearance of a stack of each kind. A height of twilve feet is aufficient for the body after subsidence; unil a rectangular stack of this beight, forty feet in length and afteen feet in width, will coatain abont Suurtien tons of hay.

If the serason is unforoursble, and the hay at all dump, a litio s.tt sprinkled between each sueceasire hayer in buildiar is an excellent remedy agaiast mouldianss. The quantity userl, muat, of course, depend on the state of the hay; but as this is somewhat a diffecult point to determine, perbaps a quarter of a bushel to the fon is a sufficient allowance.

A description of the process of thatching would transe ad the 1 mits of this artiche. We will, there fore mercly remark that the entire top of the stack, down to the eaves, should be well corered by drawn or straightened strar, and the ropes arranged in the manner shown in oar illusirations.

Thoughts on Ploughs and Ploughing.

There are some aubject on which people agree to disugree, and we strongly suspect that ploughing is one of them. Dloughs are furnished to the farmer in endless rarioty, both of price and pattern. One firm alone, in England, Messrs, Lansome \& Sims, of Ipswich, -pecify in their printed and illustrated catalogue of agricultural implements, no less than twentydive differen' varicties-loug and short mould-boards, wide and marrow, heavy and light-but all made of iron and steel; aud seemingly intended to lant for pencration:. So great is the demand on this firm, and so coufident are the public of being able to obtain from them what they require, that they supply orders to all parts of the world. Any person purchasing one of their articles may have any broken portion replaced. by merely sending a communication containing certain specified numbers and letters to the firm; and the result is, a shipment of the required portion, which is so arrauged, that it can be applied to the original implement by any artisan or person of ordinary mechanical knowledge, using the toola which are supplied with the original implement. The firm in question employ in their works about 2,000 workmen, and turn out every implement required on a farm, from a simple iron harrow, costing $£ 3$ or $£ 4$. to the complicat d steam plough and eagines, with all their extensive furnishings, costing about $\mathbf{2 8 0 0}$ reterling. Now, it must be clear to any one, that varied as are soils and circumstanced, there must be an iramense deal of funcy and fashion in these different kinds of ploughs. If the object were merely to disintegrate the soil to a certain depth, and reduce it rom a close mass to a soft and spongy agglomeration of particles, any one of these many linds of ploughs, if followed by proper drags, harrows, or cultivators, would auswer the purpose. But this is certainly not the case. One farmer finds, or thinks be finds, the best result, from merely turning over the soil in long slender strips, like riblons, lying edgeways, one against, and partly orerlapping, the other. Another lurns the soil completely over in one solid furrow, nearly reversing the upper six inches of ground, and then reilucing the surfuce, so newly turned up, to a comparatively fine powder, by the action of the harrow. Again, in fallorring, where ploughing is repeated as often as time or opportunity allows, until the whole of the surface is reduced to a light friable tilth, the end is attained by a different implement. And the most extraondinary fact is, that each farmer generally thinks that the plough he uses is better tha't that of any other person engaged in the same occupation, and toiling for the same end.
In the face of these various moans of manipulating the ground, we have one solid, undeniable fact staring us in tue face, which will not, and cannot, be denied,-mamely, that the gardener, who expects and obtains, a greater retura for his labour and from his ground, than the farmer does from hia, usen only one implement-the apade, and worka his ground uniformly in the same manner, by dividing the soll into small picces, which he turns bottom upwards, burying what wat previonsly the surface, and reducing the soil, at one operation, into the bent pomible seed bed wr the future crop. It is true that gardeners sometimes use the plough, but it is as a subntitute for
the spade-the latter is uniremsalily prefirred wher" time and opportunity will afford it. Thre is ${ }^{\prime}$ doubt the fertility of the reil, in a great mea-ure, di pends on a constant addition of manurial clements. We yearly subtract from it large gields of anme ur other kind of produce. If the elements of this produce are not returned to the soil, a gradual deterior ation is very soon perceptible ; but those manurial elements are comparatively useless unless well mixed with the soil ; and it is for this purpose that we find it so necessary to pulverize and disintegrate its sabstance by the plough and other implemints. All soils consist, more or less, of clay. Now clay has a strong aftinity for ammonia and nitrogen ; and the chief ralue of manures consists in these substances. We add large quantities in the actual manure applied, but the soil, also, when well stirrel and expoced to the infuence of the atmosphere, belps itself to these substances, and it is to this fact, quite as much an to the help of manure, that ploughing deeply, and often, as. sists 80 materially in the attainment of fertility.
The roots of plants extend ouly to certain distances, and they abstract so much from the soil whilst they are nourishing the plants. Roots naturally tend downward. It is therefore of the greatest importance to mix and pulverize the soil, so that every portion of it , which was aerated and ameliorated by last year's exposure to the air, be placed just so far boneati the surface, as to be within convenient reach of the roots of the plant, with which the ground in to be occupied. It is for this reason that the benefits arise from spreading manure on the surface, and then turning it under by the plough. But here another queytion arises. Moisture. as well as rooin, naturally descends. Some of the most valuable portions of manure are soluble, and these, by the natural descent of the water are wasbed, not into the loose friable ploughed tilth, where the roots can readily find it, but into the cold unkindly till or subsoil, at the bottom of the ordinary furrow, which is so hard that the roots cannot readily penetrate and scarch for it. To meet this difficulty the subsoil plongh is used, which following the ordinary plough in the same furrow, breaks up, and, in a mesure, disintegrates the lower bed, into which the best part of the manure (i.e. the soluble parts of it) are washed. Here again, however, anotber question presents itself. At the time We sow the seed, we sow it on the top of the ground, and bury it with the harrow. It must not be buried too deep, or its growth is delayed. And it is all im. portant that so soon as the plant begins to grow, it should be able to reach it; food. In the first atage of its growth it requires ammonia or the soluble portion of the manure, but the greatest quantity of that clement is at the depth of six or seven inches amongst the soil, at the bottom of the furrow, and it will be some weeks before the plant can reach it with its root. In Canada, where time and quick growth are of prime importance, a week lost in the early attainment of vigour by the plant may be fatal. Especially is this the case with fall wheat, for a week lost in the tall may cause sufficient delay at harvest to throw it into the rusting season, and the whole crop may be lost. We therefore require (in order to give the greatest possible benefit to the carly plant) to mix the manure with the body of the soil, so that the seed may at once find it out when sown, and receive its beneft at the time when it is most essential to its growth. This end is, in a measure, attained by soaling the seed grain in some artificial, or chemical, mirture, in a concentrated shape, which not only aswimts its rapid germination, but promotes the apeedy growth of the root, and afforls an immediate magazine of nourishment when it is most wanted. The same end is attained by micring the manure thoroughly throughout the soil, but this requires at least three ploughings,-since the first turn it under, the second lays it up again, and the third mixes it throughout the tilth. The following plan is equally good or better, nince it not only does with two ploughings, but as the anrface cxposed to the action of the atraos.

