of three-fourths of a quadrant (viz. three-sixteenths) of another circle, whose radius is the side of a square inscribed in the first circle. Or upon the same principle,

The quadrature of a circle, is equal to a square inscribed in another circle, whose radius is the chord of three-fourths of a quadrant (viz. three-

sixteenths) of the first circle.

I do not expect, Mr. Editor, you can supply your readers with a figure similar to the inclosed; therefore I will endeavour to give such an enunciation of the above rules, as those who choose, may easily construct figures for themselves.*

In the given circle A C B D of which, it is required to find a rectilineal figure equal to the circumference, draw the diameters A B, C D, at right angles; join A D: A D is the side of a square within the circle. Next, about the centre D, with radius D A, describe another circle, passing through the points A, B, and cutting C D in the point S: then A S B D is the quadrant of a circle, whose radius D A is the side of a square within the circle A C B D. Bisect the arch C B, in the point F; join F D: S B is bisected in the point Draw A R, the chord of the arch

ASR, which is three-fourths of the quadrant ASBD; AR will be equal to the arch CFB, and, consequently, the square described upon AR, is equal to the circumference ACBD.

but !

in t

C (

the

cons

in t

circ

led

allo
in c
whi
Tel
car
ten
fam
the
th
con
to 1
He

fraibef cot M's tor I s' at pos 300 ing 930 ly wo th:

CO

fre

th

gu

mi

be

15

m

6

di

th

W

I

ri

pi

ar

th

I

Or thus, by the second method. In the same figure, bisect F B (which may be done by producing A R) in the point G: join C G: about the centre O, with the distance C G, describe another circle N H, and through the points A, D, of the first circle, produce the diameters to the points N H, of the second; join N H: N H will be equal to the arch C F B:

^{*}As we ardently desire the improvement of the inhabitants of Nova-Scotia, in literature, and general and useful knowledge, we have got the figure cut by Mr. Torbett, that the demonstration may be the more easily perceived by our mathematical readers.—ED.