clocks are good, and they have imitated our watches; they walk about with "pedometres" attached to their belts and they are not backward in copperplate engraving and perspective. Their china is far superior to the Chinese. The country abounds with coal, though they only use that found close to the surface; but even that, a sort of bituminous shale, is good. In gold and silver I believe they could rival Mexico and Australia; iron, copper, and tin are found in profusion. A friend of mine at Yokohama gave a Japanese a piece of English cotton shirting; in a few days the man brought back two pieces, and my friend had much difficulty in saying which was his, so closely had it been imitated. In fact, they are a people who want for nothing but teachers.

Tables Relating to Locomotive Engines.

The following useful tables from the American Railway Times, should find a place in the engineer's note book :---

The tractive power required to move any load upon a level railway is found by dividing the square of the speed in miles per hour by 171, and to the quotient adding 8, and multiplying the sum by the load in tons.

sneed in Miles	T	ractiv	0 DOW	er ne	eđed. lo	ad be	log	
ner hour.	50 ton	A.	75 tor	8.	100 ton	as.	250 tons	
12	442		663		884		2210	
15	465		691		931		2328	
20	517		773		1034		2585	
25	682		874		1165		2912	
30	663		994		1326		3315	

Table showing the tractive power required to overcome grades with different loads.

Grade in feet	Load in tons.									
per mile.	1.	50.	50. 75.			100.		250.		
20	8		424		636	•••	848	*** ***	2122	
40	16		848	•••	1272		1696	*** ***	4244	
60	26		1272		1910		2546		6340	
80	83	***	1697	•••	2545		3393		8489	

To find the tractive power needed to overcome any grade, we multiply the load by the rise per mile, and divide the product by 5280, the number of feet in a mile.

Table of factors which multiplied by the total piston pressure give the tractive power of the engine in lbs.

Diameter of						
Driver.	18.	 20.	22.	24.		
4	2386	 2652	 2918		3182	
41/2	2250	 2500	 2750		3000	
41/2	2151	 2390	 2593		2830	
432	2012	 2235	 2459		2682	
5	1910	 2122	 2334		2546	
51/2	1736	 1929	 2122		2315	
6	1591	 1768	 7945		2122	

The above are all decimals, and are got by dividing the double stroke by the wheel circumference, both in inches.

Table of piston pressures for different cylinders, and different steam pressures.

Diameter of	Area of	Whole p	esures o	n both pie	stons, at
Cynnder.	201	100 lbs.	110 lbs.	120 Jbs.	130 lbs.
1 8	254	50,900	55,990	48.204	52,002 66 170
20	814	62,640	69,124	75,408	81,692

Relative volumes of steam under different pressures.

Steam pressure. 80 90 100	••• •••	Relative volume. 359 323 293	Steam pressure. 120 130 140	•••	Relative volume, 249 231 216	
110	***	269	150	••••	203	

That is, at a pressure of 100 lbs. per inch, each cubic foot of water will make 293 cubic feet of steam.

Table giving the amount of surface obtained by 100 tubes, of different dimensions.

Length of tube.	Squar	e fe	et of a of tu	urfa bes i	ce in in inc	100 hes	tubes, being	dia	meter
in feet.	11.		34.		2.		2 1 .		21.
10.0	892		457		524	***	589	•••	655
10.5	411		480	•••	549	***	618	***	687
11.0	431		503		576		647	•••	720
11.5	451		526		602		677	•••	753
12.0	471		649		628 ·	***	705		786

Table showing the mean pressure in the cylinder, for different percentages of admission, and different initial pressures.

Initial pressure	Mean	ı cyl	inde	r pr	essure	o cu	iting	off	at '
in lbs.	1/4.	•	1/3.	-	1/2.		2/2.		34.
100	54	***	65	•••	83	***	. 93	••••	95
110	60	••••	72	•••	91	***	102	•••	105
120	66	***	79	•••	9 9`	•••	112	•••	114
130	72	•••	86	•••	108	•••	121	•••	124

That is, if we cut off the steam at 50 per cent., which has a pressure at entering of 120 lbs. per inch, the mean pressure throughout the stroke will be 99 lbs.

On Refining Petroleum.

The methods practiced by persons engaged in refining the American Petroleums are as different as those in use for the purification of the oils distilled from coals. Some employ acids and alkalies, others use alkalies alone, and steam is applied at various degrees of heat. Some of the oils produced by those means are of good quality, others are inferior and do not ascend the wick of the lamp in sufficient quantities to afford a constant light. In others, the illuminating principle, by some change effected on the carbon, is partially destroyed, and in almost all the odor is disagreeable. The oils from some of the wells contain traces of chloride of sodium, other carbonate of soda in quantities, sufficient to effect their treatment. The denser oils, or those which contain too much carbon to admit of being consumed in lamps without smoke are excellent lubricators, either mixed or unmixed with animal oils.

It will be perceived by the foregoing statement that it would be a difficult task to prescribe a mode of purification to meet the requirments of the oil refiners. Neither the petroleums nor the oils distilled from them contain creosote, or cabolic acid, and other impurities which contaminate the oils distilled from coals and coal shales; their purification therefore, is simple and comparatively cheap.

When the proof of the oil is not below 38° Fah., distillation with water, or by the use of steam, will most frequently render the lamp oil of good color, and its illuminating properties will be of the highest order. Before the heavy oils, or those below proof 38° Fah., are submitted to any treatment, it is necessary to give them a preliminary distillation, by the aid of common or superheated steam, and the distillate should be separated into two parts, all below proof 38° Fah., being set aside to be added to the illuminating oil. Washing the lighter part of the charge with a solution of caustic potash or soda, is useful. A final distillation over a weak solution of either of those alkalies will generally render the oil pure. The heavy parts of the oil may require agitation with equal parts of sulphurig