appeared almost at a standstill, the little accomplished being done by men outside our profession, and to better this we must endeavour to provide a course of education which will make our students, pharmaceutical chemists in reality as well as in name. Such a course must be one of practical work. Education (from e and duco to lead forth) is development, it is not instruction merely, knowledge, facts, rules, communicated by the lecturer, but it is discipline, it is a waking up of the mind, a growth of the mind by the healthy assimilation of wholesome aliment. The real requirements of a pharmacist was ably shown, the responsibility which attaches to his calling insisted on, and an eloquent appeal made to the students to throw themselves heartily into the arduous work required from them. The president of the society and the ex-president of one of the English schools warmly congratulated the lecturer at the close. We cordially add our contribution of praise, and congratulate the Montreal College of Pharmacy upon the teaching power put forth for their advantage.

To Preserve the Colours of Pressed Plants.—It is well known that plants treated with alcohol have their natural colors preserved for a considerable time; but still they begin to fade far too soon, and many assume a blackish color during the tedious process of drying, in consequence of the partial decomposition or fermentation of the sap. To avoid this, resort may be had to the following process: Dissolve one part of salicylic acid in six hundred parts of alcohol, and heat the solution to the boilingpoint in an evaporating dish. Draw the plant slowly through the liquid, wave gently in the air to get rid of superfluous moisture, and dry between folds of blotting-paper several times repeated. In this manner the plants dry rapidly, which is a great gain, and they thus furnish specimens of superior beauty. Do not let them remain long in the solution, or they may get discolored; and renew the blotting paper often.

According to Mr. W. Craig a solution of chloral hydrate, in the proportion of a grain and a half to an ounce of water, serves as a preservative of vegetable tissues, even retaining their natural colors.

Pelletierine.—Tanret has discovered in pomegranate root bark an alkaloid which he has named "Pelletierine," but which it is proposed to call by the more appropriate name, "Punicin." We take the following account from Hager's "Pharmaceutische Praxis." prepare it, a thousand parts of the coarselypowdered bark are made into a paste with milk of lime. This is packed in a displacement apparatus, and percolated with water until 2,500 parts of percolate are obtained. The percolate der constitutes, with few exceptions, the basis of all is repeatedly shaken with chloroform; the chlor-insecticides actually employed, and it has been erro-

laled with dilute sulphuric or hydrochloric acid z the acid solution is neutralized with soda, and evaporated to dryness in a vacuum over sulphuric acid. The saline mass thus obtained is mixed with an excess of potassium or sodium carbonate, and shaken with chloroform, by which the free punicin is dissolved. When the chloroform is evaporated the oily-looking alka... loid remains behind. Tanret has obtained four parts of punicin sulphate from 1,000 parts of the root. When pure, it is a colorless liquid. with an aromatic odor, and slightly soluble in water, alcohol, ether, and chloroform. When its solution in chloroform is evaporated in the air, it becomes yellowish; dropped on paper, it leaves a grease spot, which quickly disappears when exposed to the air. It is volutile at ordinary temperatures, and when the vapor of hydrochloric acid is brought near it, it gives a white cloud. It has a strong alkaline reaction, neutralizes acids, and forms with them crystalline salts. From the solutions of the salts of most metals it precipitates the oxides; with platinum chloride it gives no precipitate, but it does so with the chlorides of palladium and gold. It reacts with most of the alkaloid tests. The tannate is soluble in excess of the acid. The sulphate, hydrochlorate, and nitrate form good crystals, but are strongly hygroscopic. Their solution evaporated in a vacuum leaves neutral colorless salts, but when evaporated in the air they become yellow, and acquire an acid reaction, through the destruction of the base. salts have a weak odor and an aromatic bitter taste.

On the Preparation of the Green Iodide of MERCURY.—Mr. Patrouillard, in discussing the merits of several formulæ for the preparation of mucurous iodide (hydrargyri iodidum viride), draws attention to a process devised by M. Dublanc, a number of years ago, which he considers to have advantages over those at present in use. This process consists in triturating together a mixture of mercuric (red) iodide and of metallic mercury, in the proper proportions, namely:

> Mercuric Iodide...... 227 parts. Mercury...... 100

The red iodide may easily be obtained of absolutepurity, and in a state of perfect dryness; besides, during the trituration, there is no risk of loss by volatilization. The mixture should merely be moistened with alcohol of eighty per cent., so as to form a thin paste, and well triturated; the reaction takes place in a very short time, and the product is of a dark greenish-yellow color. By way of precaution it should be washed with boiling alcohol.—Rep. de $Pharm., in\ New\ Remedies.$

THE ALKALOID OF PYRETHRUM CARNEUM. BY M. Jousser.—It is known that pyrethrum in powroform, in turn, is shaken with water acidu-| neously supposed that the action is merely mechanical