antiner. .und the pistil, are the only essential organs of the fl wer. and are some imes the only parts present. In the flowar of grasses the coverings of these essential structures aro mere scales. Usually the stamend and pistil coexist in tho same flower; but sometimes they ars separatod, one kind of flower bearing only stamens, and another ouly pistils. We see an example of this in maize, insomestrawberries, in the hop, and otter well-known plants. come iustances the two kinds of tlowers are found on the same plant, and iu others they grow on separate plants. In tho latter case it is neccessary that both kinds of plants grow near each other, or the seeds, aren though the fruit maş ripen, will proro infertile. lnsects, hovering from plant to plant, and carrying with them the pollen of the pertilizing flowers to the stigma of the seed-bearin: forers, become the unconscious agents in impregnatiog tho latter and rendering their seeds productive. In artificial cultiration, mansomotimes controls this reproductive process in plants, and by applying the pollen of one variety to the stigma of another, obtains irom the seed thus fertilized a crose or hybrid, partaking in a mixed degree of the qualities of both parents. This is called hybridization, and bas been turned, both in flowerand frits culture, to rery useful account. Important results haro also been gained, and may get be still furtherestended by its application to thecultivation of acld products, and ner and hardy varieties of grain may thus be oblained. Of course there is a limit to the extent to rhich this crossing of rarictics and species can bo carried Mu!?s. cren in the vegetable kingdom, are apt to become infertilo, a provision mado by nature for the obrious purpose of prerenting tho confusion, and indeed the extinction of specific charactors atnong plants as well as animals.

As soon as the orule has been fertilized, the function of the flower ceases; the fertilizing egents and the Joral curerings commonly perish, and the resuurces of tho plant are concentrated in maturing the fruit, that is, in preparing the seed for its independent life. At the tume of flowering the vegotation of the plant is in fullest rigour; tho subsequent processes are exhausting, and the plant either dies or needs a season of rest. We should draw from this consideration one practical lesson at least, in the case of grasses, clovers, and other crops which aro employed as fodder. If we wish to eecuro these in their very best condition, when they are most fully charged with nutritive juices, we shoald select for cutting, the time when thes are in flower, before the blooms hare begun to fade, and the seed-maturing processes, whicis cxhaust the sap of the plant so maverially, hare commenced.
Tho endless varicties presented by the perfect frait tbroughout the regetable world, from the minute and almost naked seed, to the gigantic bread fruit, the manner in Thich the sced is sbed, the numberless and curious contrirances for distributing and dispersing these germs of new life, the rich realth of food thus stored up for the future plant, and ministering at the same time in nature's bountiful profusion to the rants of a ligher order of beings, these and a gundred other topies must be passed by without comment, cacent to indicato the extent and interestIng character of the boundiess field of enquiry which this department of knowledge opens up to the stadent of nature. Nor can wo allow ourselves in this place to cxpatiate on the wonderfal beauty in form and hue of these perfect grons of the fiold ; but we mar, before concluding, jost allude to a prosaic riet of the subjeet which may suggest a new idea to some of our readers. Admitting that the lovely coloursand slapes of towers served no other purpose than mere ornament, we sbould not think the end attained a trivial one, or that the profusion of heauty scattered orer the carth was any wasto of crestive power. But, we believe, there is another und a more directly practical object securpd-that
these very thapes and bues serse nin important purpose In the cconomy of regelation. We know that the ugency of the sun's rays in many chemical anil organic processes is a compound agenes, that the different coloured rays possess different properties, and it is natural to iofer that the multiform and manghued cups and chalices into which God's hand has moulded the flowers may bo exactly adapted to separate be their peculiar tints, and concentrate by their reflecting surfaces, tho special rays of light and heat which the fertilizing process needs in each plant,- that the curvo of the corolla, and the blue or the gold of the petals, may be essential elements of a tiny set perfect laboratory, where light and lifo are working out their marvollous operations, no less than the artistic fluish of a beamiful creation deaigned to dulight the beholder and satisfs tho Maker's sense of what is fair and good. This view of the subject may induco the utilitarian to regard Fith more complacency the beautiful flowers of the oarth, whife it will detract nothing from the enjogment of tho poet or artist, and liso every fresh contemplation of the theme, will iucest with a new interest the lesson of the great Teacher, who best knew of what lie was speaking when ho utterecl the injunction to "consider the lilies of the field how thes grow."

Profitable Farming.

To the Editor of Tie Casida Faimar:
Sin,-1 have read with pleasuro two articles in sour issues of Norember and December last, on improving land by soming turnips, and rotting them Where grown. This method bas been tried in Eugland. Nesbit, in his lectures, states that some farmers had a gain of thirty shillings an acre, by rotting this crop, over the profit from feeding to sheep. But might not the samo thing be done as well, and cheaper, after a somewhat different method? There is much labour in raising an acre of turnips, wages are high, and tur-nip-hoers scarce. Tho samo work that would cost 10 h . in Eogland, will cost a dollar in Canada. After the roots are raised, the operations of pulling, topping, and tailing, atoring them in cellars, and lastly, cutting and carrying them to the cattle, aro labourious; and after all, nearly nine-tenths of the bulk are water. It is understood by sheop-feeders that 2,210 lbs. Swedish turnips make 11 lbs. of mutton. Then it is said that regetablo masuro raises a crop wit: only half the nitrogen in it that many other manures will give. (See Johnstonc's Lectures.) I hare raised turnips bere for about forly years, and began feeding about 100 lbs daily, hut haro gradually reduced the feed to 30 lbs. dails. I believo my fields are in butter condition now than they were when Ifirst began with them. Tha farm was wild, broken with gullies, and swamps, when I begail to chop on it. With your permission I will tell how it is now farmed. It is in eleren fields, two of these (22 acres) are in permanent pasture, two other nine fichls, averaging 18 acres each, aro used thus :-First ficld in oats, second divided as follows two acre's of potaloes, four of turnips, three of corn, sown thick for soiling, (after the corn is taken off I get a small crop of turnips,) and nine acres of peas or corn. The third feld is in barley, or wheat, or both ur fourth in cloror, the fifth clorer, the sixth clover, his seventia and cighth pasture, and the ninth, clover, fi:idne tho rotation. Most of this hand is draided whatiloc or wood, some portions of it with stonca, ', paralle' draims at trenty-seven feet apart The wo 1 is b.twi hemlock or cedar, the cost being about is s.tne ne that of tiles, say, ls 10a. the rod.
Such is my gen aral plan. The details are as follows. To begin with the eightecn acres of oats. This fehl is ploughed in the fall, sown early with two and a half busbels of oats, iarrowcd diagonally twize, with a heavy hurrow, then drassed rith tro bubluels ul ushes, 76 lbg. of galt, ope peck of tator lime, fo lue ul burnt
bones, and 401 bs of sulphate of ammonia. The total cost of top-dressing it £1 2s. 0.d. Afterwarisharrow twice lengthwise with a comuon hurrow. Fifty or a lundred pounds of sulphate of ammonia may be used. Uniler this treatment 100 or more bushels of oats may be raised to the acte. 1 enpect seventy bushels. It is presmaed there is plenty oflime in the land. If I fal low, when stumping or imiuiug. I lay on 70 busbels of quick-lime on cach acre. After that it wanta S0 lbso yearly. I keep the lime clear of gard dung and ammonia. The land should be well ploughed and subsoiled.

The second field is chicfly a hoed crop. Two acres are planted with potatoes. This portion of the laund should be ploughed in the fall, twice grubbed and harrowed in the spring, then drilled. Sow the follow ing dressing :-8 bushels of nshes, 1 barrel super phosphate of lime, ivo lbs. of sidt, 100 lbs of plaster, 50 lbs. of burnt bones. and half a bushel of water lime. Take a round light \log and drive apikes in it, and draw it wwice along the drill to mix the dressing with the carth. 1"lant the potatoes in the proportion of about 15 bushels to the acre; cover with the double monld plough. Before they are through the ground, I harrow with light harrows, then sow 50 lbs of sulphate of ammonia, and 100 lbs of plaster, and afterwards scufle. They will not want much hoeing. Scuffe agaiu and set up slightly. Two hundred or two hundred and fifty bushels will probably be the relura. Four acres are deroted to turnips, which should we wrought in the same way, only the manure is spread before the drills are made. The same wanure and dressing are used as for potatocs. The crop with me is not below 800 bushels, nor over 1000 bushe!s per acre, and at 3d. the bushel leares but little balance. Of the remainiag land, nine acres are in peas. Tho land is plonghed and harrowed, and two bushels of peas are sown to the acre. The ploughing is four or tire inches deep, with a gang plough. Top-dress with 48 lbs . of burnt bones, 200 lbs . of salt, and 300 lbs of plaster. Harrow lightly and roll lightly. The crop may be from 30 to 50 bushels to tice acre, 36 bushels being about the average. The rest of this field, amounting to three acres, is planted with corn, sown thick for soiling. This is wrought in the same manner, and dres. sed as for potatocs. The corn grows very thick, and eight or nine fect high. The crop is worth at least $\$ 10$ an acre. My cows are fed twice daily, as much as they will cat. It is cut into lengths of fivereighths of an inch. Some turnips are giren after the corn is cut.

The third crop is barley or wheat, ploughed in the fall, grubbed in the spring once or twice, and barrowed. Two bushels of barley aro sown to theacre, put down with the gang plougls or drill, top-uresed with two bushcls ashes, 150 peunds salt, forty-cigbt pounds burnt bones, and one peck of water-lime Harrow once, roll, and sow grass seeds, consisting of nine pounds red clover, three or four pounds Alsike Clover, five or six quarts of Timothy. Ifarrow light ly, mix 150 pounds of plaster with fifty pounds sulplate of ammonia, and sow it on the barley when wro or three inches high. Cut lefore it is dead ripe The crop is about fifty bushels or more per acre The cost of piaster and sulphate of ammoniais about IGS Gd. In the fall let no beast feed on the young clorer. Dress it with sixteen good loads of yaril dung, and sow on the dung, after it is spread. 150 pounds plaster. The sard dund will be worth 3s Gid wer lone, besides spreading and carrying to the fiehl. In spring sow two bushels ashes, forty-cight pounds of bones, 100 pounds salt, fifty pounds plas ter, the cost, in all. being l3s Gd. There will be four tons (800 cib) of hay or more, as the fourth crop. After the sicond cuiting do not let the after grass be eaten down. I cut is soon as the grass is in bloom, before seed is formed-last year I hegan on the lith Jann Thir entitug, curing. and drawing to the barn costs about is per ton.
The fifh coop is hay. top-dressed in spring with
 burnt boncs. 1.00 poinds s:alt, :300 pounds plasier, forly poumes sulphate of ammonia: 160 pommls sul. phate ammonia would be brites. The toial cost will

