frequent use. It will be convenient to describe it here, and to point out two of its properties. Let $w, w^{\lambda}, w^{\lambda^{3}}, \ldots, w^{\lambda^{n-2}},$ (6)

be a cycle containing all the primitive n^{th} roots of unity. The number λ may be assumed to be less than n. With a view to convenience in printing, the indices of the powers of w in (6) may be written

$$1, \lambda, \alpha, \beta, \ldots, \delta, \varepsilon, \theta; \tag{7}$$

that is to say, $a = \lambda^2$, $\beta = \lambda^3$, and so on. Take P_1 a rational function of w, and, z being any integer, let P_z be what P_1 becomes when w is changed into w^z . Then the function to which we desire to call attention is

$$P_1^{\theta} P_{\lambda}^{\epsilon} P_{\alpha}^{\delta} \dots P_{\delta}^{\alpha} P_{\epsilon}^{\lambda} P_{\theta}. \tag{8}$$

The subscripts of the factors of the expression (8) are the terms in (7), while the *indices* are the terms in (7) in reverse order. The expression (8) may be denoted by the symbol ϕ_1 . From ϕ_1 , as expressed in (8), derive ϕ_s by changing w into w^s , z being any integer. Then

$$\phi_{1} = P_{1}^{\theta} P_{\lambda}^{\epsilon} P_{a}^{\delta} \dots P_{\delta}^{a} P_{\ell}^{\lambda} P_{\theta}$$

$$\phi_{\lambda} = P_{1} P_{\lambda}^{\theta} P_{a}^{\epsilon} \dots P_{a}^{a} P_{\delta}^{\lambda}$$

$$\phi_{a} = P_{1}^{\lambda} P_{\lambda} P_{a}^{\theta} \dots P_{\delta}^{a}$$

$$\vdots$$

$$\phi_{\theta} = P_{1}^{\epsilon} P_{\lambda}^{\delta} \dots P_{\delta}^{\lambda} P_{\ell} P_{\theta}^{\theta}$$
(9)

The second of these equations is derived from the first by changing w into w^{λ} . This, since $u = \lambda^{2}$ and $\beta = \lambda^{3}$, and so on, causes w^{λ} to become w^{a} , and w^{a} to become w^{β} , and so on. Hence it causes P_{λ} to become P_{a} , P_{a} to become P_{β} , and so on. Thus the second of equations (9) is obtained. The rest are obtained in a similar manner.

§8. One property which the function ϕ_1 possesses is that $\phi_0^{\frac{1}{n}}$ has a rational value. For $\phi_0 = P_0^{\theta} P_0^{\epsilon} \dots P_0^{\lambda} P_0 = P_0^{t}$, where $t = 1 + \lambda + \lambda^2 + \dots + \lambda^{n-2} = \frac{\lambda^{n-1} - 1}{\lambda - 1}$.

Because (6) is a cycle of primitive n^{th} roots of unity, $\lambda^{n-1} - 1$ is a multiple of n. And, since λ is less than n, $\lambda - 1$ is not a multiple of n; therefore t is a multiple of n. Put t = mn; then

 $\boldsymbol{\phi}_0 = (P_0^m)^n;$

consequently, one of the values of $\phi_0^{\frac{1}{n}}$ is the rational quantity P_0^m .