mode of occurrence to the bituminous matter in bituminous shales and limestones.

We may compare the disseminated graphite to that which we find in those districts of Canada in which Silurian and Devonian bituminous shales and limestones have been metamorphosed and converted into graphitic rocks not dissimilar to those in the less altered portions of the Laurentian*. In like manner it seems probable that the numerous reticulating veins of graphite may have been formed by the segregation of bituminous matter into fisures and planes of least resistance, in the manner in which such veins occur in modern bituminous limestones and shales. Such bituminous veins occur in the Lower Carboniferous limestone and shale of Dorchester and Hillsborough, New Brunswick, with an arrangement very similar to that of the veins of graphite; and in the Quebec rocks of Point Levi, veins attaining to a thickness of more than a foot, are filled with a coaly matter having a transverse columnar structure and regarded by Logan and Hunt as an altered bitumen. These palæozoic analogies would lead us to infer that the larger part of the Laurentian graphite falls under the second class of deposits above mentioned, and that, if of vegetable origin, the organic matter must have been thoroughly disintegrated and bituminized before it was changed into graphite. This would also give a probability that the vegetation implied was aquatic, or at least that it was accumulated under water.

Dr. Hunt has, however, observed an indication of terrestrial vegetation, or at least of subacrial decay, in the great beds of Laurentian iron-ore. These, if formed in the same manner as more modern deposits of this kind, would imply the reducing and solvent action of substances produced in the decay of plants. In this case such great ore beds as that of Hull, on the Ottawa, 70 feet thick, or that near Newborough, 200 feet thick†, must represent a corresponding quantity of vegetable matter which has totally disappeared. It may be added that similar demands on vegetable matter as a deoxidizing agent are made by the beds and veins of metallic sulphides of the Laurentian, though some of the latter are no doubt of later date than the Laurentian rocks themselves.

It would be very desirable to confirm such conclusions as those above deduced by the evidence of actual microscopic structure. It is to be observed, however, that when, in more modern sediments, Algæ have been converted into bituminous matter, we cannot ordinarily obtain any structural evidence of the origin of such bitumen, and in the graphitic slates and limestones derived from the metamorphosis of such rocks no organic structure remains. It is true that, in certain bituminous shales and limestones of the Silurian system, shreds of organic tissue can sometimes be detected, and in some cases, as in the Lower Silurian limestone of the La Cloche mountains in Canada, the pores of brachiopodous shells and the cells of corals have been penetrated by black bituminous matter, forming

^{*} Granby, Melbourne, Owl's Head, &c., 'Geology of Canada,' 1863, p. 599. † Geology of Canada, 1863.