is ingested fails to undergo proper application, and passes, instead, as sugar through the system to the urine, with which it is discharged as waste material. This is the plain statement of fact regarding the difference between health and diabetes, and what is wanted is a right understanding of the details concerned.

It has been hitherto assumed, without any positive evidence as a basis, that the carbohydrates undergo oxidation in a direct manner in the system. Liebig placed them in his group of calorifacient food-principles. In his time physiology and chemistry were not sufficiently advanced to permit of carbohydrate matter being followed after being taken as food so as to obtain informa-tion of the phenomena occurring. The first step in this direction was the renowned work of Bernard. Bernard, accepting the view that the carbohydrates are destined for the purpose of oxidation within the system, enunciated the doctrine that the liver is endowed with a glycogenic function which provides a supply of sugar to be conveyed to the tissues for oxidation when carbohydrate matter is lacking in the food. I need not give attention here to the faulty groundwork upon which the glycogenic doctrine was raised. This matter has in times past been amply dealt with. standing, however, that it is recognized that the experimental groundwork is fallacious, the doctrine has become so firmly implanted in the mind as to render effacement difficult. Apart from other considerations, what it implies affords its condemnation. order that sugar may reach the tissues for oxidation, it must enter the general circulation. Now it happens that the stream of blood alleged to convey sugar to the tissues for destruction in part goes It was formerly taught that the capacity existed of to the kidney. tolerating a certain amount of sugar in the blood without its passing off with the urine, and this tolerating capacity was asserted to have been found in the dog to stand good for a proportion of 2.50 per 1000; in other words, when sugar amounted to 2.50 per 1000 in the blood, sugar escaped with the urine, but not when a less proportion existed.

At that time neither for blood nor for urine were the analytical methods for the recognition and determination of sugar in the satisfactory position in which they stand now. Modern physiologists are agreed that the amount of sugar normally present in blood is about, or a little under, 1 per 1000; and in association with this it can be definitely stated that sugar passes into the urine. It can also be definitely stated that in association with 2.5 per 1000 of sugar in the blood such an amount passes into the urine as to give it a pronounced saccharine character. The question of the presence of sugar in normal urine long stood, or was considered to stand, as a debatable point. The discussion on the subject that took place in the pages of *The Lancet* a few years back, in which I took part, will probably be remembered. The method formerly adopted for separating the sugar from the urine and obtaining it in sufficient quantity for its satisfactory identification was by precipitation with lead acetate and ammonia. Operating upon the product yielded by this process, I obtained information which left no doubt in my own mind that sugar constitutes an ingredient of healthy urine. More recently Baisch and others have operated with benzoylchloride. By this reagent sugar may be precipitated