two to three degrees above the companion bottles. The disturbance then subsided, and the temperature fell to an equality with B and C, and a considerable sediment, composed of yeast, settled at the bottom. In the meanwhile, B showed little alteration; but on the sixth day it began to ferment, the temperature went up, and for more than a week its thermometer stood about two degrees above A and C. Finally, the temperature in B declined, the disturbance subsided, and the newly formed yeast settled to the bottom of the vessel.

This fever in a bottle resembled small-pox in the following points. A period of incubation intervened between inoculation and the commencement of disturbance; then followed a period of disturbance accompanied by elevation of temperature; this was succeeded by a subsidence of the disturbance and a return to the normal state. Great multiplication of the infective material (or yeast) took place during the process, and, after its conclusion, the liquid was protected from further infection with the same contagium. We likewise notice that the contagium of fermentation, like that of smallpox, may take effect either by direct purposive inoculation or by fortuitous infection through the atmosphere. In both cases the infective material has the power of preserving its activity for an indefinite period. The comparison fails in at least one important point—in the fermented urine, sugar is replaced by alcohol and carbonic acid; but we are not aware that any pronounced chemical changes occur in the blood or tissues during an attack of small-pox. I would, moreover, carefully guard myself against being supposed to suggest that the enhanced temperature in the fermenting urine is a real analogue of the preternatural heat of fever.

Let me direct your attention to another example—a kind of partial decomposition or fermentation which takes place in boiled hay-infusion when it is inoculated with the Bacillus subtilis. Bacillus subtilis is a very common bacterium found in vegetable intusions and in curdling milk. I hope you will take note of this little organism; for I shall have to refer to it more than once in the course of this address. I took a flask containing hay-infusion, which had been sterilised by boiling, and inoculated it with a drop of fluid swarming with Baciclus subtilis. After the lapse of twenty-tour hours the previously transparent infusion became turbid. turbidity increased, and on the second day a film or crust formed on the surface of the infusion. On the third and subsequent days the crust broke up and fell in pieces to the bottom of the vessel. about a fortnight the turbidity passed away, and the original transparency of the infusion was perfectly restored, so that it looked exactly as it did before the process began, except that there was now a sediment consisting of the spores of the little organism at the bottom of the flask. In this case, again, there was the same succession of events: a period of incubation, followed by a period of disturbance, succeeded by a period of subsidence, and, finally, restoration