Railway and Marine World

With which are incorporated The Western World and The Railway and Shipping' World, Established 1890

Devoted to Steam and Electric Railway, Marine, Grain Elevator, Express, Telegraph, Telephone and Contractors' interests

Old Series, No. 440 .
New Series, No. 158

TORONTO, CANADA, APRIL, 1911.
For Subscription Rates,
See page 337 .

TRANSITION CURVES

${ }^{B_{Y} H_{\text {Henry }} \text { K. Wicksteed B. A. Sc., M. Can. Soc }}$ E., Chref Engineer of Surveys, Mackenzie, Mann and Co. LId. pyright, Canada, 1911, by Acton Burrows Limited. Mr. Wicksteed has rccently written an ${ }^{a}$ new elion to the tra.sition curve for ant and edition of instructions to assistNorthern resident engineers Canadian out. At Ontario Ry., which is being got in the matter request he has kindly placIn transmitter at our disposal, and as ronsmitting it to us has written We Ws:
We have tables and diagrams in of the ment little volume and most to use men have some idea of how ${ }^{i n g}$ to them apply them, but in talkton of them I find that not one in derlying them understands the unthe wherinciples, the whys and curve, andores of the transition the form how he may work out casion do withimself, and on ocgether. Without the tables altoa mistake When one of them makes slaring and is apt to be a very ${ }^{\text {suchg }}$ if and conspicuous one, and if he had would not have made ${ }^{\text {detetre }}$ had understood the raison cuse such the curve, and in any culated to an understanding is calvastly in broaden his ideas and Work and hise his interest in his "Mr. Howard's efiency.
ebruary issue sarticle in your subjh to issue will, I think, do Conject, create an interest in the the nh $_{\theta}$ part initial knowledge on hat start of the reader and does $\mathrm{have}_{\mathrm{e}}$ end from the beginning. I as Wish to mored to do so, and as cann useful as make our little volume $y_{0} n_{n}$ ot do as possible, I think we your co-operation than to invite sugg columns and ask through magestions as for criticism and sime the sub to how we may best "It as subject as clear and as f_{0} It has possible.
I nearly twenty hobby with me seen down then years back, and 'the proved, the and have since "urve uset mathematical principle that that used was of the general the form of little consequence, but most use was which would come into least readily was that which could be the use of run on the ground with the Dul curve whibles and formulæ.' That ally, is also which is the easiest to manian is a fortun most perfect theoretichapcident neverth accident, but it is chopened so, wertheless, and had it not of its some, We should have probably "Jusreater simperfect one on account used ust as the simplicity.
thin the parabolicer railway engineers othe of were easier to calculate than Wher of the circle, and calculate than brork method than and they had no ught in, when some inventive mind the method of deflections, the
circular curve immediately took its place, because easier to manipulate, and the parabola disappeared. Aside from the fact of its being a most useful, in fact, as we have come to believe, essential factor in railway alignment, the cubic parabola or quadratic curve is a very beautiful geometrical study in itself, and well worthy of a mathematician's attention."
In accordance with Mr. Wicksteed's suggestion, we will be pleased to receive criticisms or comments on it for pub-
the transition into five equal parts, the curvature at the ends of the several divisions should be $1^{\circ}, 2^{\circ}, 3^{\circ}, 4^{\circ}$ and 5° respectively. This has always been admitted, but it was not until the late A. M. Wellington investigated the properties or the ideal curve that it was deemed practicable to meet these requirements exactly and a number of more or less cumbersome substitutes were in use, so cumbersome and difficult of practical application that few engineers attempted to use or even understand them, and either nothing was done at all or a mere arbitrary allowance was made by offsetting the curve inwards so as to allow room for the flattening at the ends, the form which the flattening took being dependent altogether upon the artistic sense and eye of the section foreman.

Refer to figure 1. -Let $\mathrm{A}-\mathrm{B}$ be a circular curve terminating at A in the tangent $\mathrm{F}-\mathrm{A}$. C is a parallel tangent, and $\mathrm{C}-\mathrm{B}$ is the transition curve, and is such that it is bisected in length by the perpendicular A-G, and A-G is in its turn bisected by it. This is somewhat obvious and scarcely needs demonstration.
Another more remarkable property, which is not obvious, but is quite susceptible of demonstration, is that the angle B.D.E., representing the total angle of the transition, is always three times B.C.E., which is the tangential angle corresponding to the point B, at which D.B. is tangential to the curve. It follows that C.B.D. $=$ B.D.E.-B.C.D. $=3$ B.C.D.-B.C.D. $=2$ B.C.D.

Now, assuming as in our first suppositious case, that the constant curve $\mathrm{A}-\mathrm{B}$ is 5°. By hypothesis our curve is uniformly accelerating from 0° to 5° at B, and the mean curvature must be $2^{\circ} 30^{\prime}$. If we make C.B. 150 ft ., then the total deflection B.D.E. must be $3^{\circ} 45^{\prime}$, and the tangential angle B.C.E. $1 / 8$ of this, or $1^{\circ} 15^{\prime}$. Double the final curvature at B. to 10°, and B.C. proportionately to 300 ft.,' and we get B.D.E. $=15^{\circ}$ and B.C.E. $=5^{c}$, or four times what we had in

Henry K. Wicksteed, B.A.Sc., M.Can.Soc.C.E., Chief Engineer of Surveys Mackenzie Mann \& Co. Ltd.
lication in our columns. The paper fol-lows:-

The object of the transition curve is to accomplish the super-elevation of the outside rail uniformly and gradually so that the elevation shall, at any and every point, be adapted to the curvature at that point. Inasmuch as the centrifugal force which the elevation is intended to offset is inversely proportional to the radius of the curve, it follows that if the rise of the outside rail over the inner is to be uniform throughout the transition, the radius of the curvature must diminish uniformly and regularly. In other words, the curve should be one of "uniform acceleration."

If the final curve into which we transide is a 5°, for example, and we divide
the first instance. In other words, the tangential angle to any point is proportional to the square of the distance of that point from the beginning or origin of the curve.

It will be further seen that as the curve accelerates uniformly the proper transition is got, not by scheming a separate curve for each degree or pitch of central circular curve, but by cutting off a standard transition at the proper point corresponding to the degree of the central curve. If we divide this standard into a number of equal chords, and designate the chord points $\mathrm{P}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$, etc., the transition for a 4° curve will be the same as that for a 10°, but we shall stop it in the one case at P_{4}, and run an ordinary 4° circular curve from

