and is preferred over non-catalytic operation. Various wet scrubbing methods have been developed but none seems very promising.

The situation for NO_X is the same as for other pollutants. The selection of abatement method depends on the degree of control required. A rough ranking is as follows:

Removal efficiency level, %	Process listing	
90% or higher	1.	Catalytic reduction ^a with more than normal amount of catalyst, preceded by combustion modifications
50-80%	1.	As above, with normal amount of catalyst
	2.	Combustion modifications (all types) followed by non-catalytic reduction (ammonia injection without catalyst)
	3.	Combustion modifications alone (for low part of range so as to minimize boiler problems)
	4.	Low-NO _X burners
Below 50%	1.	Staged combustion ^b
	2.	Low-NO _x burners ^b
	3.	Gas recirculation (except for coal ^b)

^a Technology has not been proven with respect to coal-fired boilers.

The capital costs associated with the use of combustion modification techniques for the control of $NO_{\mathbf{X}}$ emissions from thermal power plants are estimated at:

Techniques	Capital Cost	NO _x Emission Limit
Low Excess Air	\$0	0.9 lb per 10 ⁶ Btu
Staged Combustion (over-fired air)	\$2-3/kW	0.7 lb per 10 ⁶ Btu
Low-NO _x Burners	\$2-\$10/kW	0.4-0.5 lb per 10 ⁶ Btu

Used in combination with others if necessary to achieve the required reduction level.