cal method, but it may be said to represent the generalised outcome of all of them.

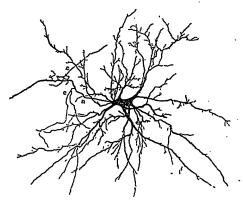



Fig. 2. Golgi cell of type I. Neurone from the optic tract of the cat (after Kölliker). The dendrites are very numerous with broad spreading braiches; the axis cylindricates release branches but moderntaxis cylindricates but moderately; c, indicates where the collaterals come off.

Figure 2. Represents what is known as a Type I. Golgi cell or neurone, in which the dendrites are much more prominent than the axone.

The reverse of this is seen in the Type II. cell of Golgi. represented in Figure 3, in which it may be observed that the axone is very much branched. The little projections on the dendrites known as gemmules or thorns are very well seen in cells of the cerebral cortex and can be hetter explained later.

Figure 4. Shows how

amazingly complex a arborization of the single axone may be as in this case of a Purkinje cell of the cerebellum.

These three illustrations represent admirably the great advances made through the use of the Golgi method in displaying the complexity of the

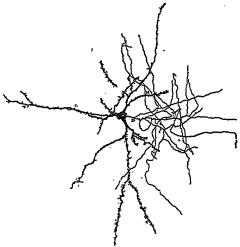



Fig. 3. Golgi cell of type II. From the cerebrum of a cat (after Kölliker). In this case the axis cylinder a is very greatly branched while the dendrites are represented by the course pro-cesses which are covered with "thorns" or "gemmules."

processes of the neurone.

Figure 5 will serve to illustrate the real nature of the nerve tract on the one hand and collaterals and arborizations on the other. The fibres proceeding upwards represent the axones of neurones of the spinal ganglia, which axones form the posterior columns of the spinal cord; while given off from either the upper or the lower branch into which the axone divides after it enters the cord, are the collaterals, i.e., side branches, which in turn may aborize around the dendrites of axones whose cell bodies are in the grey matter of the cord. Thus it wil