PRINCIPLES

of the

SOLUTION OF EQUATIONS OF 'IHE HIGHER DEGREES,

WITH APPIICATIONS.
bi george paxton young, Toronto, Canada.

CONTENTS.

1. Conception of a simple state to which every algebraical expression can be reduced. $\$ 6$.
2. The unequal particular cognate forms of the generic expression under which a given simplified expression falls are the roots of a rational irreducible equation; and each of the unequal particular cognate forms occurs the same number of times in the series of the cognate forms. $\quad \$ 9,17$.
3. Determination of the form which a rational function of the mimitive $n^{\text {th }}$ root of unity ω_{1} and of other primitive roots of unity must have, in order that the substitution of any one of certain primitive $n^{\text {th }}$ roots of unity, $\omega_{1}, \omega_{2}, \omega_{3}$, etc., for ω_{1} in the given function may leave the value of the function unaltered. Relation that must subsist among the roots ω_{1}, ω_{2}, etc., that satisfy such a condition. $\S 20$.
4. If a simplified expression which is the root of a rational irreducible equation of the $N^{\text {th }}$ degree involve a surd of the highest rank ($\$ 3$) not a root of unity, whose index is $\frac{l}{m}$, the denominator of the index being a prime number, N is a multiple of m. But if the simplified root involve no surds that are not roots of unity, and if one of the surds involved in it be the primitive $n^{\text {th }}$ root of unity, N is a multiple of a measure of $n-1$. $S 2 S$.
5. Two classes of solvable equations. $\$ 30$.
6. The simplified root r_{1} of a rational irreducible equation $r^{\prime}(x)=0$ of the $m^{\text {th }}$ degree, m prime, which can be solved in algebraicul functions, is of the form
