coling the springs, by any saitable fixed steam-engine or other prime-motor, are to be provided, rotary motion boing commu. niratrd hy rhafts under the roadway to vertical spindles and gnared wheels, which being throwninto temporary connection, for the purpose, with the spring-barrel, will coil the springs until the requisite tension power is obtaned. The means of effecting this temporary connection of the prime-motor with the carriage-mechanism may obvously be varied, without affecting the principle of thus providing stored-up power, selfcuntained, whereby tho car may bo automatically propelled Adrquate brakr power is also provided 80 as not only to control and arrest, when requisite, the suring-power, but to hold it in complete suspension when the car is stationary : and furthe:more, an arrangement of clatches is interposed between the spring-harrels and the driving-wheels, whereby the uncoiling motion of the springs, which is constant in one direction only, may be transformed into an ultimate variable notary motion, giren out in opposite directions as needed, for reversing the direction of propulsion of the car.

In the accompanying engravings fig 1 represents en ordinary tramway car in side elevation, fitted up with this self-propelling appliance, and showing the mechanist for winding up the coiled springs applied thereto. In fig. 2 is shown an invertel view or plan of the underside of the ca-framing and merhanism; the sectional plan of the spring-barrels or drums and gear connectrd therewith appearing in fig. 3 ; while fig. 4 inmonstrates in elevation, as applied to such a tramway carriage, the mechanical arrangement proposed for employment in winding up the springs.

Fixpd hnrizontally and transversely beneath the carriage flonring and situated at about the centre of its leagth, are two serime or groupa of hollow drums or spring barrels, A, A1, fitted on to sleevr-shafts, carried on fixed axies, B, B1; in each group there are tive barrels, but any less or greater number of barrels mav be eraployed, as may be convenient and requisite Simultaneous operation of all the springs in both groups may be secured an ! maintained ; or, on the other hand, action may be limited to thr springs of one series only; the arrangement and detalls being as follows.

A winding-shaft, C, is fixed in bearings in the cheeks or side plates, \mathcal{D}, fitted to tho underside of the carriage-framing, which carry also the drum-axles, B, B_{1}. On the shaft, C, is keyed a pinion, c_{1} geared into a spurwheel, a, affixed to the spring-barrel, 1 , the first of group A. The spring-barrels, 1 and 2, are loosely mounted on a slecve on shaft B, and severally connected thereto by means of coiled springs, whercof the coll for the barrel 2 is in the reverse direction to that for the barrel 1 ; the barrels 3 and 4 aro simalarly carried by, and reversely connected to another and independent sleeve on the same axle. Connection between the barrels 2 and 3 is effected by a pin, b, at the periphery of the barrels, which thus acts alternately as a drivir, to transmit the coiling power from the prime-motor, passiag through spring-barrel, 1 , or vice versa, to give out the power of tension stored up in the colled-springs, when acting in their turn as prime-motor. A similar pin, b_{3}, also connects spring-barrels 4 and 5 , whercof the latter is roounted on and connected with a separate sleeve, and carries a spur-wheel, al, ongaging in another like spur-wheel, a2, affixed to the spring-barrel, 6 , the first of the second group or series, A_{1}, carried on the axle, B1; the arrangement and connection of the spring-barrels, $6,7,8,9$, and 10 , constituting the second gr up are precisely similar; and the last barrel, 10 , of the senes is provided with a spur-wheel, e2, engaging into the intermediate gearing actuating the driving-wheels.
Centrally located between B and 131 is a supplementary axle, E_{1} arso carried in the side-plates, D, and serving to carry a loose pinion, c, engaging in the spur-wheels, e1, e^{2}, which are respectivcly m sunted on shafts, 83 and 131,80 as to run loose; the wheel, el, is connected with the spring-barrel 1, by means of a pawl and ratchet, just as in the case of e^{2}, and 10 . Fric-tina-brakes, h, thrown in and out of action by brake-rods, H, H1, extending forwards and backwards to the opposite ends of the car, and by lever handles, and operated by bevel-gearing, as slonwn in fig 2 -are fitted on the peripherics of the springtarrelv 1 and 10 , so as to act asdetents for the prevention of the runving down or uncoiling of the springs of both sroups, when In action; or otherwise, when released, to permit them to exercse their tension-power
The count"r shaft, F, carried in bearings in side-plates, D, serves to transmit the spring-power and rotary motion to the
axle ' $'$, of the driving-wheels, by the medium of spur-gearing,
$f, f, f 2$. I'pon this driving arle are two pirions, g, loosely mounterl, and having clutch-teuth on ther boxeg, furmed to re. ceive respectively the teeth of a pair of clutches, g1, sliding on feathers on the chaft X, and actuated by the clutch-rods, g ? Theso constituti the reversing gear, for forward motion, the pinion into which the wheel, f, gears, is thrown into action, the trausmission of p, wer being direct, fur ruversal to backward motion, the spur-wherl, $f=$ is put in action, driving an idle pinion g^{3}, gearing into the adjacent pituton, g, and ruaning looscly on a shaft, g^{f}, having its leariogs in radius rode, g5 resnectively pendent from shafts, P, G, and thus transmitting epposite rotation to G. It will be understood that the terms "backward" and "forward "aro only relativo, and that moticn may be imparted to the car in cither direction indifferently.

In caso the barrels, 1 and 10 , aro both released from the fric-tion-brakes, h, both groups of springs exert their power through their respective spur-wheels, el, $e 2$, upon the pinion, f. If, howover, the brake be put inaction on the barrel, 10, only, the tension-powre of group, A, is transmitted back bs spur-wheels, $a^{2}, a 1$, in aid of group, A, and the spur-wheel, e, by the pinton, e, and e2, now acting as an idl owheel drives the pinion, t; on the other hand, if the barrel, 1, be h.ld by the brake, and 10 be free, the action of the springs is transmitted in the reverse direction to the wheel en, which thus receives and transmits the whole combined propelling power.
The winding-up of the spring-barrels is effected, as oxplained, br engine power, located at suitable intervals along the track, as may be convenient for the run, or at special stopping places. In fig 4 the stationary engine, 1 , and fly-wheel, K , drives by belt the pulley, L, fix \boldsymbol{f} on horizuntal shaft, M, carried in bearings, caclnsed in a metallic tubo or casiag, beacath the roadwar, and extending across the tramway trach, close alongside whereof a covered bos, N, is suak in the rosdway, enclosing a chain-wheel, O, affixed on the shaft, N. The endless pitchchain, P, passes round O, and a second chain-wheel, Q, carricel on a pair of radius arms, B, supported on M. The axle of Q is fitted with a sleeve so shaped as to connect rith the rindingaxle, C, of the tramway car, and thus give the requisite motion thereto. On the arrival of a car at any station requiring to have its epring-tension renewed, the chain-wheel, Q, is rased into position, connected with the shaft, C, and the epring-barrels are wound up by the engine, which being dono, U is disconnected, and depressed into its original position. A frictioncoupling or other like appliance may be introdnced at nny suitable and convenient part of the spparatus, to prevent overFinding.

The crucial point of the whole system clearly relates to the size and power of the spriags, the arrangement adopted, of connecting together the springs alternately by their arbours and peripheties, practically unites all the soparate springs of the two groups into one continuous coil, exerting the juwer of each individual momber of the series (supposed of equal strength), but exerting that power through a proportionately longer period The power and duration of the springs must bo adequate for the maintenance of the requisite maximum (though limited) speed for a period or journcy of sufficient longth.

Now it has been computed that the actual tractive force, requisite to overcome the resistance of a tramway car weighing gross 5 tons, is 60 lb . on the driving wheels, corresponding to 720 lb . on the periphery of the spring barrel; 24 lb . and 288 1b. respectively correspond to a gross weight of 2 tons; and in like proportions for intermediato weights. So far as previous experionce goes, a spring 6 lb . in weight, exerting a direct pressure of 105 lb ., may be taken to ropresent the maximum in size and power of such stecl springs. Under the stimulus applied by M. Loveaux's researches, the stecl manufacturers of Shefield, by special and improved plant, annealing ovens and appliances, have turned out springs 50 to 60 feet long, capable when duly coiled of exerting a presbare of 800 lb . to 900 It . without permanent set. In France also, still driving bands, with grest elasticity, aro made 100 yards in length, 80 that the question of the possibility of obtaining springs of the requisite size and power is practically solved.

Having satisfactorily tested the principle in a working model, to one-sixth scalo, on a small temporary tramway of considerable length, ir Leveaux has had all the necessary mechanism and appliances made by a well-known firm of en-

