1013.1.a. Note 1 con't.

Technical Note: Absorption test samples for 1013.1.a. Note 1.c.1. should be a square at least 5 wavelengths of the centre frequency on a side and positioned in the far field of the radiating element.

- 2. Tensile strength less than 7 x 10⁶ N/m²; and
- Compressive strength less than 14 x 10⁶ N/m²; 3
- d. Planar absorbers made of sintered ferrite, having:
 - 1. A specific gravity exceeding 4.4; and A maximum operating temperature of 548 K (275°C). 2

Note 2: Nothing in 1013.1.a. releases magnetic materials to provide absorption when contained in paint.

- 1. b. Materials for absorbing frequencies exceeding
 - 1.5×10^{14} Hz but less than 3.7×10^{14} Hz and not transparent to visible light;
 - c. Intrinsically conductive polymeric materials with a bulk electrical conductivity exceeding 10,000 S/m (Siemens per metre) or a sheet (surface) resistivity of less than 100 ohms/square, based on any of the following polymers:
 - 1. Polyaniline;
 - 2. Polypyrrole:
 - 3. Polythiophene;
 - 4. Poly phenylene-vinylene; or
 - 5. Poly thienylene-vinylene.
 - **Technical Note:**

Bulk electrical conductivity and sheet (surface) resistivity should be determined using ASTM D-257 or national equivalents.

2. Metal alloys, metal alloy powder and alloyed materials, as follows:

Note:

1013.2. does not control metal alloys, metal alloy powder or alloyed materials for coating substrates.

a. Metal alloys, as follows:

- 1. Nickel or titanium-based alloys in the form of aluminides, as follows, in crude or semi-fabricated forms
 - a) Nickel aluminides containing a minimum of 15 weight percent aluminium, a maximum of 38 weight percent aluminum and at least one additional alloying element;
 - b) Titanium aluminides containing 10 weight percent or more aluminium aluminum and at least one additional alloying element;
- 2. Metal alloys, as follows, made from metal alloy powder or particulate material controlled by 1013.2.b.:
 - a) Nickel alloys with:
 - (1) A stress-rupture life of 10,000 hours or longer at 923 K (650°C) at a stress of 676 MPa; or
 - (2) A low cycle fatigue life of 10,000 cycles or more at 823 K (550°C) at a maximum stress of 1.095 MPa;
 - b) Niobium alloys with:
 - (1) A stress-rupture life of 10,000 hours or longer at 1,073 K (800°C) at a stress of 400 MPa; or
 - (2) A low cycle fatigue life of 10,000 cycles or more at 973 K (700°C) at a maximum stress of 700 MPa;
 - c) Titanium alloys with:
 - (1) A stress-rupture life of 10,000 hours or longer at 723 K (450°C) at a stress of 200 MPa; or

- (2) A low cycle fatigue life of 10,000 cycles or more at 723 K (450°C) at a maximum stress of 400 MPa:
- d) Aluminium alloys with a tensile strength of: (1) 240 MPa or more at 473 K (200°C); or (2) 415 MPa or more at 298 K (25°C);
- e) Magnesium alloys with a tensile strength of 345 MPa or more and a corrosion rate of less than 1 mm/year in 3% sodium chloride aqueous solution measured in accordance with ASTM standard G-31 or national equivalents;

Technical Notes:

- The metal alloys in 1013.2.a. are those containing a higher 1. percentage by weight of the stated metal than of any other element. 2 Stress-rupture life should be measured in accordance with ASTM standard E-139 or national equivalents.
- 3. Low cycle fatigue life should be measured in accordance with ASTM Standard E-606 'Recommended Practice for Constant-Amplitude Low-Cycle Fatigue Testing' or national equivalents. Testing should be axial with an average stress ratio equal to 1 and a stress concentration factor (Ky) equal to 1. The average stress is defined as maximum stress minus minimum stress divided by maximum stress.
- 2. b. Metal alloy powder or particulate material for materials controlled by 1013.2.a., as follows:
 - 1. Made from any of the following composition systems: **Technical Note:**

X in the following equals one or more alloying elements.

- a) Nickel alloys (Ni-Al-X, Ni-X-Al) qualified for turbine engine parts or components, i.e., with less than 3 non-metallic particles (introduced during the manufacturing process) larger than 100 µm in 10[°] alloy particles;
- b) Niobium alloys (Nb-Al-X or Nb-X-Al, Nb-Si-X or Nb-X-Si, Nb-Ti-X or Nb-X-Ti);
- c) Titanium alloys (Ti-Al-X or Ti-X-Al);
- d) Aluminium alloys (Al-Mg-X or Al-X-Mg, Al-Zn-X or Al-X-Zn, Al-Fe-X or Al-X-Fe); or
- e) Magnesium alloys (Mg-Al-X or Mg-X-Al); and
- 2. Made in a controlled environment by any of the
 - following processes: "Vacuum atomization";
 - a)
 - b) "Gas atomization";
 - "Rotary atomization"; c) d) "Splat quenching";
 - e) "Melt spinning" and "comminution";
 - "Melt extraction" and "comminution"; or f)
 - g) "Mechanical alloying";
- c. Alloved materials, in the form of uncomminuted flakes, ribbons or thin rods produced in a controlled environment by "splat quenching", "melt spinning" or "melt extraction", used in the manufacture of metal alloy powder or particulate material controlled by 1013.2.b.

3. Magnetic metals, of all types and of whatever form, having any of the following characteristics:

a. Initial relative permeability of 120,000 or more and a thickness of 0.05 mm or less;

Technical Note: Measurement of initial permeability must be performed on fully annealed materials.

- b. Magnetostrictive alloys, having any of the following characteristics:
 - 1. A saturation magnetostriction of more than 5×10^{-4} ; or