Industrial School Association, Mimico, held a meeting a few days ago to decide held a meeting a few days ago to decide
upon a fitting memorial to the late W. H. upon a fitting nemorial to the late W. H.
Howland. A sub-committec was appointed to make arrangements for the erection of a memorial hall, and another meeting will be held shortly to receive their re port.

FIRES.

A new double dwelling house at Halifax N. S., qwned jointly by Geo. Grant and J Stanhope, was destroyed by fire on the 25 th inst. Insurance $\$ 1,000$.-The music hall at Creemore, Ont., was burned re cently. The loss is mostly covered by insumnce.-The new opera house at Woodstock; Ont., was totally consumed by fire on the 22nd inst. Insurance $\$ 10,000$. It will in all probability be re built. The building was owned by E. W. Waborm-The flour millat Tavistock, Ont. of which the Ratz Bros, are the principa stockholders was destroyed by fire last week. Loss, $\$ 23,000$; insurance, $\$ 4,000$ - The Rathbun Company's office and freight sheds at Belleville, Ont., were burned on Friday last. Loss, $\$ 9,000$ burned on Friday last. Loss, By, 0∞ covered by insurance. The Bromel
House at St. Thomas, Ont., was destroyed by fre recently. Loss, $\$ 4, \infty \infty$; insurance $\$ 2,000$.-W. A. Benson's residence at Northport, Ont, was burned to the ground on Tuesday last.-The flax mill at St Thomas, Ont., owned by J. Lindsay and operated by Mr. Keith, was destroyed by fire on the 26 th inst. Loss, $\$ 4, \infty \infty$; no fire on the 2 ath inst. Loss, $\$ 4, \infty 0$; no insurnnce. It is sald the owner will not
rebuild.-C. Lacroix's frame dwelling rebuild.- C. Lacroix's frame dwelling
house at Sarnia, Ont, was burned on the zoth inst. Loss, $\$:, 200$.-The cheese factory at Cherry Hill, Ont., was burned recently. Loss, $\$ 2,500$; fully covered by insurance.-Fawcett's foundry at Halifax, N. S., was destroyed by fire on the 24 th inst, including the moulding shop, nickel rooms, furnace and engines. The loss rooms, furnace and engines. The Nss will amount to over $\$ 75,000$.-Edwin R.
Wriphts buildings on Campbell road, Wrights buildings on Campbell road,
Halifax, N. S., were burned last week. Halifax, N. S., were burned las
Loss, $\$ 4,000$; insurance, $\$ 1,200$.

CONTRACTS AWARDED.

Red Deer, Alta.-The contract for constructing a traffic bridge across the ed Deer River has been awarded 10 Mr D. W. McKenzie, of this place

Ottana, Ont.-Mr. W. A. Currie, of Bank street, has been awarded the contract for painting and glazing for the pro posed contagious discases hospital.

Vancouver, B. C.-The contract for the construction of the Sumas dykes has been given to Messrs. McLean Bros., and for the boilers, engines, etc., for the same to the British Columbia Iron Works Co.
Hamilton, Ont-It is said that contracts for the crection of the proposed tracts for the erection of the proposed
smelting works inave been awarded to a smelting works inave been awarted to a agreeing to take half the contract price in stock.:
BERLIN, ONT.-The offer of the Ontario Mutual Life Assurance Co., of Waterloo. of $\$ 23,500$ for the issue of $\$ 22, \infty 0$ of 5% debentures of this town $\$ 2 z, \infty$ of 5% debentures of this town,
payable in 30 equal inst:aments, has been payable in
Toronto, Ont. - The Peterboro Bridge and Engincering Company have finally been awarded the contract by the Board of Works for the supply of steel pipes for the extension of the Yonge st. sewer, at the tender of $\$ 7.48$ per fool The Board also awarded contracts as fol lows on Tuesday last: Severn stree scwer, J. H. McKnight \& Co., \$757; Hill street sewer, and May street sewer, A. J Brown, $\$ 551$ and $\$ 71 \mathrm{~S}$.
MONTREAL, QUE-The governors of Laval University last week awarded contracts as follows for the erection of new tracts as follows for the erection of new near'St. Catherine strect, in accordance with plans prepared by Messrs. Perrault, Mesinard \& Venne, architects: stone work, Bóncher \& Huberdeau; brick-work, PL Brunet ; stecl and iron-work, Lolgnon \& Frere; wood-work, U. Pauze, plastering, E. Morache; phinting and glazing,
and plumbing-work, Pelletier \& Brosseau; heating apparatus, Lesard \& Harris; roofing, Pelletier \& Brosseau. The build ing is to be of Montreal limestone four stories high with basement, and will cost about $\$ 150,000$. The style of architecture is Renaissance.

BUSINESS NOTES

G. Smith, plumber, Montreal, has been burned out.

Massey \& Dufresne, contractors, Montreal, have dissolved partnership.

Cameron \& McKay, masons, Delorane. Man., have dissolved partnership.

Mr. Joseph Nott is commencing business as a plumber at Vancouver, B. C.

It is announced to be the intention of the E. Chanteloup Co., of Montreal, short ly to go out of business.

The firm of Nelson \& Maughan, sash and blind manufacturers, Richmond, Que.,
has been dissolved, Mr. Alaughan retiring.

ELECTRIC DRILLS IN A QUARRY.

The electric percussion drill, since it was first put into practical operation has undergone many changes, each in the line of improvement, until to day it competes successfully either with stean or compressed air drill. One of the most interesting percussion drill plants is that in operation at the limestone quarries of in operation at the limestone quarries of the Solvay Process Company, near Syracuse, N. Y. This plant has now been
working continuously for several months, working continupusly for several months,
and the results attained, both in amount of work done by the drills and the convenience and economy of their operation and maintenance, have given thorough satisfaction to the company first undertaking their general employment. Installed by the General Electric Company of New York at the commencement of last winter, the drills have operated without interruption from the intense cold, and have practically demonstrated the advan tages derivable from the use of electricity in quarry work. Had steam been the only available power, conditions were such at this plant that the loss in transmission by condensation at 20 deg. below zero would have been so sreat that the zero would have been so great that the
drills could not have been worked. The drills could not have been worked. The
quarry is situated in a desolate spot on quarry is situated in a desolate spot on
an elevated plateau, where intense cold found full scope for action. At the present time three "Type E" General Electric Companys drills are in continuous operation for ten hours per day, drilling holes from six to ten feet in depth, and from 2 to $21 / 2$ inches in diameter at and from 2 to $21 / 2$ inches in diameter at
the top. The rate of drilling according the top. The rate of drilling according
to the record kept by the superintendent, is from 45 to 75 feet per ten hours, aver aging 50 feet per day, or 1,500 feet per month of 30 days. The average distance of the drills from the power station is about 2,000 feet at the present time, the circuit, three lines of bare No. o copper wire, being extended to a distance of wire, being extended to a distance of
$3,0 \infty$ to 5,00 feet from the power 3,000 to 5,000 feet from the power
station in one direction. The manistation in one direction. The mani-
pulation of the drill is in every respect pulation of the drill is in every respect
as simple as that of the steam or as drill, stopping and startung being ac complished by merely throwing a handle to the right or to the left, making or breaking the contact between the cable and the terminals of the coils. Not the slightest difficulty is experienced in lubricating the wearing parts or in handling the drill. Whearing parts or in handing the drill. The general dimensions of the "Type E"
drills, three of which are doing all the deep-hole drilling for the quarry are:Length over all, 49 inches; outside di amcier, wrought-iron tube, 712 inches; blows per minute, 380 . The generator which supplies the power is of the bipolar type, running at normal speed, and is protype, running at normal speed, and is prorent alternately into the upper and lower coils of the drills. The difference of potential at the fixed brushes of the gehera tors is 240 to 250%. The gencrator is belted to a 9 inch by 12 inch straight line engine, supplied with steam at $\varphi 0$ pounds pressure from a horizontal tubular boiler; fuel for which is brought for three miles
over the cableway in the buckets used to transport the lime rock from the quarry to the works. As yet no estimate of costs of repairs can be given because cip to date there have not been any. Should, how cver, any part break down it can instantly be replaced, as all the parts are inter changeable. The company states that the plant has aroused widespread intercst among quarry operators in general, and has been visited and carefuilly inspectes by many less prone to reject the good things which advanced science offers That electricity is an ideal power for mine and quarry operation the working of these electric percussion drills does much to how.

HOW TO FIND THE STRENGTH OF CAST-IRON COLDMNS.

The method of finding the necessary sectional area of metal to support a given load at a certain beight is as follows Let us, says Work, take a case of a column 18 feet high, having to support a load of ten tons. The first point to be decided is what is to be the diameter of the column Let us, to commence with, assume one 6 inches in diameter. This makes the num ber of diameters 36 , which, by the dia gram, we find wants a divisor, of 57.6 This must first be multiplied by the load (so tons), then divided by $49-\mathrm{i}$. e., the number of tons required to crush a square inch of cast iron-which gives us 11.75 square inches of sectional area required Now, to obtain the thickness of metal necessary to give such a column this amount of area requires a somewha lengthy calculation. We must firsi deduct this 11.75 square. inches sectional area from the area of a 6 -inch circle (which is is 28.27), and this gives us 16.52 as the area of the hollow space of which we wish to learn the diameter, viz., the inside diameter of the column. To obtain this, we divide 16.52 by 9854 , getting a quotient of $21.03 ;$ and we then extract the square root of this amount, which gives us 4.58 inches as the diameter. By deducting this from 6 inches (the outside diameter), we get 1.42 inches as the thickness of the we get 1.42 inches as the then metal on the two sides, or 7 inches in 9 the thickness of the inetal required. If 9
inches be taken as the diameter and the inches be taken as the diameter and the
same method followed, remembering that the column is 24 diameters, and therefor 33.3 is the divisor, it will be found that only 6.79 inches area are required, and this can be obtained by metal about $1 / 4$ inch thick; but in castings, such as columns of this size, nothing less than $1 / 2$ inch metal should be used, and therefore a diameter of about 7 to $7 / 2$ inches would be the best to employ for such a position.

USEFUL HINTS.

A cord of stone, three bushels of lime, and a cubic yard of sand will lay 100 cubic feet of wall.

1,600 laths will cover 70 yards of sur face, and cleven pound lath nails will nail them on. Eight busiels of good lime sixtecn bushels of sand, and one bushe of hair will make enough good mortar to plaster 100 square yards.

Cement, 1 bushel, and sand 2 bushets, will cover $3 \frac{1}{2}$ square yards 1 inch thick; $4 \frac{1}{2}$ square yards $1 / 4$ inch thick, and $61 / 4$ square yards 1 inch thick; I bushel ce ment and 1 of sand will cover 214 square yards 1 inch thick, 3 square yards $3 / 4$ inch thick and $41 / 2$ square yards $\$ / 2$ inch thick.
The proportooning of radiation is a detail in the phanning of an apparatus for warming, says Heating and lentilation which calls for careful judgment, and it is important that a full consideration be given to all conditions which would influence this estimate, forming as it does, the basis of computation for the entire work and particularly for determining thit most vital point in any system of warmingvital poiler.
A Strong Cement.-Common alum melted in an fron spoon over hat coals forms a very strong cement for joining class and metal together. It is the best thing for holding glass lamps to their
stands or for stopping cracks about their bases, as kerosene does not penerate it Housekeepers ought to keep this in re membrance, for sad accidents may be pr vented by its use.

Munigipal Department.

BRIDGE SUPERSTRUCTURE ANL FOUNDATIONS IN NOVA SCOTIA.

During the last few years the use of concrete for highway bridge abutments and piers has obtained much favor in Nova Scotia, owing largely to the efforts of Mr. Martin Murphey, M. Aın. Soc. C. E., Provincial Government Erigineer. There have been 147 highway bridges of metal superstructure and concrete foundations built within 10 years, 44 of which have built within 10 years, 44 of which have
been standing for five years. The use of been standing for five years. The use of
concretc foundations is also being rapidly extended torailway bridges. These founda tions have been subjected to heavy drift ce and to the extreme of climate, and but one failure has been recorded; this one was undoubtedly due to improper workmanship. The work is done under the supervision of the government en cineers, and generally by men trained in the use of concrete. The cost of concrete work in bridge piers and abutments varies from $\$ 5.50$ to $\$ 6.50$ per cu. yd., and from $\$ 7$ to $\$ 8$ in arched bridges. The aggre gates used vary according to the material most easily obtained in the neighborhood of the work. They are for the most part the natural gravels. Large subble stones are commonly used imbedded in the con crete. The cement used is English Port land.
The construction of concrete foundations varres, of course, with the conditions of the foundation bed. On rock, iron or steel cylinders are commonly used. A crib containing voids for the cylinders is sunk over the pier site, and holes are drilled into the rock in which iron rods are placed. The cylinder is then placed outside of these rods and filled with concrete. Where quicksand covers the rock it is first removed and then a mattress of brush and small stones is sunk through which the piles are driven and the cylinder is placed on them. The space between the pilcs is filled with concrete tween the pilics is filicd with concrete,
and the piles directly under the cylinder are allowed jo extend up into the cylinder several feet. Cribwork and piles are also used in clay. In some cases caissons resting on piles, upon which a monolith of concrete is built, without cylinders, are used. It is stated in the paper read before the International Engineering Congress by Mr. Murphy, from which the above matter has been abstracted, that these foundations withstand the action of the climate and the shocks of drift ice better than masonry and that they are much cheaper.

Chemical Precipitition for disposing of $12,000,000$ gallons, or one fifth of the sewage of Clasgow, Scotland, is to be tred:raplantdejigned by G.V. Alsing and crected at a cost of $\$ 225,000$. On entering the works it runs direct into the catchbasins, according to the Industries and Iron, where the heavier parts are precipitated by gravity and fow into sludge tanks. It is then run into filter presses and will it is then run into fiter presses and wil be utilized as manure tor agricultural pur-
poses, if possible. The lighter flow from the catch-basins rill be lifted by centrifugal steam pumps into the mixing chamber where the chemicals, sulphate of alumma and milk of lime, are added. The liquid then passes into the precipitation tanks, z_{4} in number, each $45^{\prime} \times 50^{\circ} \times 6^{\prime}$ in depth, and with the capacity of 96,000 gallons. The work of separation over, the filis on the surface is emitted through self-floating

