AN ANCIENT BRIDGE.
It is satid that, the first London Bridge over the Thames was buit by the nums of St. Mary, who hyed at Southwark. This
was very early in British history, for in 1008 there was a battle fought on the bridge with the Danes, who had taken possession of it. The Dines could be driven off, but there was a mightier foe to this structure. The bridge was a wooden one, and it was dashed to pieces by a violent flood. This wooden bridge was succeeded by another, of the same material, and as the first succumbed to flood so did the second to fire.
The third bridgo was made of stone, as wisdom had been learned from the fate of the other two. Colechurch, in the reign of
astic, Peter of Colech Henry II. To mise the necessary money the King puta tax on wool, and so the people used to say that Old London Bridg was built on wool-packs. Peter of Colechurch, whio is supposed to have
belonged to the Brethren of the Bridere belonged to the Brethren of the Bridge,
began his work in 1176; began his work in 1176 , and it was
completed in 1209 , during the reign of King John. There was no question aboit the strength of this structure. It was remarkable for its massiveness and the enomous surplus of material used in it. It had twenty iuches in a span of 940 feet. The piens were from 25 to 34 feet thick, so that the piers themselves occupied two-thirchs of the stream even at high water, while at stream even at high water, while it
low water less thin one fourth of the whole span was left for waterway, and a dangerous fall was calused. There was a small town built upon the bridge markets, bakeries, manufactories, dwelling-houses, ind even a chureh,
In the crypt of this church were buried In the crypt of this church were buried the remains of Peter, its architect, who died while the work was in progress.
lt was in accordance with a custom of the Brethren of the Bridge that when any member of the society died during the superintendence of an important within the structure. Nouly seven hundred yours after Peter's bones were found in tho crypt when the work was in progress in the construction of the in progress in the co
New London Bridge.
It is said that some of the people who lived on the bridge thought of it as quite a world in itself, and spent, their whole lives there, never leaving it.
The Lomdoners of to diny would The Londoners of to-day would hardly
be so conservative. I'lie great fire of be so conservative. The great live of
London, in 1666 , did much damage to the bridge, so far as the structures upon it were concerned, but it stood for nearly two hundred years more.
The New London Bridgo was designed by the architecti Rennic, and work was berun upon it in 1894 . It is ath imposing structure of granite, 928 feet in length, with tive elliptical arches, in the place of the twenty of the old bridge. The centre arch has
a span of 152 feet. The illustration a span of 152 feet. The illastration
gives some indication of the thronging gives some matiation of the thronging
tratfic that surges over this structure, trabfic that surges over this structure,
in the same locition where for almost in the sand locition where for almost
nine handred yeirs there has been a nine hundred yents there has been a
tide of life passing to and fro over the tides of theriver.- Ihnushoted Christion Weckly.

THE WONDERS OF ICE.

by captain james tr.olohnston, r. e.

- Lee is one of our cheap luxuries, not so much in Daglancl, perhaps, as in sumnier climes, where the want of it
requires to be felt, before it can be mited at its true value; but even here, during the summer months, its use is so pleasing the summer months, its use is so pleas-
nint that we cann quite understand the old ant that we can. quite understand the oid
duchess's feelings that, "were the drinking of iced water but an sin it would be so much more delicious." Wo fear there is a great deal of nonsense about some of our so-cilled luxuries, their sole claim to the title being their prohibitive cost. They would cease to be so considered should they at any time come within easy reach of all.
One of the greatest blessings that science has conferred upon mankind is the manufacture of artificial ico, which can now be turned out from the machine at the cost of a very few shillings per ton. It is not our intention here to describo the sevoral methods of producing it, by radiation, evaporation, expansion, etc., nor to dwall upon its munifold benefits; but it is worthy
of remark that artificial ice is purce, more transparent, harder and denser that that formed by natme. A brief outline of how India duriue the cold weather for use against the next hot season, may interest those who have not seen or heard of it before. A large open space, proportionate to the size of the cantomment, is se the dried tims of the last senoun and laid out in rows with myriads of small, shallow earthenware saucers, having paths just wide enough for a man to walk between. In one corner are the storehouses, deep pits, some 40 to 50 feet in diameter, surrounded at ground level by a thick mud wall, about 6 feet high, the whole covered in with a conical roof of deep thatch.

Each evening at sunset, during the cold
veather, the bihistis (water carriers) from

per head per day, for four or perhaps four or four and one-half months; but the ininer thetion of ice-machines is fast; supplant in its day to. thousands of our fellow-countrymen whose lot has been cast in the shiny Past.
We all know that water, in freezing, after reaching a certain degree of cold, viz., 40° Fahrenhoit, violates the general law of contraction-by-cold, by expmuding; 174 volumes of water producing 184 volumes of ice: but few, perhaps, are aware of the enormous force exerted by it, when contined, in passing from the liquid to the solid state. In order to test the greatness of this force, Huyghens filled a cannon, made of securely exposed it to a strong froeing drenght The water froze in about 12 hours, and ex-

-

 anything by meins of a piece of ice, but this has been done, and can bedone agian by any child. One very done arian by any child. One very
clear day, it rentleman near -Wontworlid procured a circular neare of ice, 2 ft .9 in. in diameter, and 5 in . thick, which he reduced to the form of a lens: and having, about noon, exposed it to the sun, the rays transmitied through it converged to a focus at seven feet distance, and fired gunpowder, paper, linen, and other combustibles.

Quite as impossible does the converse read, viz. to make ice with the
aid of fire; yet this is equally true and equally casy, of accomplishment. We haveonly to fill a pewter pot with water, ind place a plate of similar alloy dilled with snow on the top of it, then to bring this simple apparatus near the
fire, ind stir the snow with a piece of fire, and'stir the snow with a piece of
stick or other instrument. As the snow dissolves, ice will form upon the under side of the plate. Mixing a little silt with the show will render the result more apparent, which reminds us of still another paradox, namely, that we can melt ice by increasing the degree of its coldness. To prove this, mix sal-ammoniac withsnow orpounded ice, which will at once convert them, into water; and if we now phace a
thermometer in the mixture we shall themometer in the mixture we shall
find that their cold has been increased to a surprising degree. Any salt-alum, nitre, or common sattawill do the same,
but, in their case the cold produced will not be so intense.
A pretty experiment is to melt the
interior of a Jumpof jee without in any way iffectine its exteriur by buth any the rays of the sum, through a burning glans, to it focus in its centre. In melting, the centre will. contract, and of air, and will purale many, like the
of and of in, and will purae many, like the
fy in the imber, or the milk in the coco:t-nut.
I'lhe following -account of a natural jec-house discovered in Burgundy
about the middle of th: last century about the middle of tha last century,
from the Histary of the Ioyal Acafrom the Instary of the Royal Aca-
demy of Sciences at, Piris, is mberes-ting:-"lt is at great cavern hollowed in a mountan, which is covered with oik and other large trees; the entrance resembles the gate of a eity; the arch is lused very high; one cansee clearly spacious saloon, covered with a kind of vaulted roof upwads of sixty feet high, the foomby of erystal. There is often ice in at to the depeth of four feet, and some great pieces besides, which
every house are summoned to the ice-field beaten with the fingers), where they broceed to fill their mashuths (the skins in which they curry the water) from wells sunk for the purpose, and from which they till the little stucers. Next morning, before the sun is up, a small army of coolies is assem bled, by the same means as were the bihistis the evening befure, to collect, in rough baskets, the ice that has formed in the saucers during the night, and to empty it into the pits, whore it is rammed by others into a solid mass.
These operations continue daily, so long as the frostis last, by which time each storehouse contains one huge block of ice, sereral feet thick, which is then covered over with a layer of straw and several feet of use. The average yiold is $1 \frac{1}{2}$ seers (3 lbs.)
panded with such terrific force as to burst: che piece. The force exerted uponthis acraise $27,7^{20}$ liss. This calls to mind it daun. gerous piece of comstructuon that we have observed, particulanly in barmek buildangs, where the verandah of an upper story is supportod by cast iron pillans, which are made to do duty also as main-water pipes. In course of time one or more of these down-pipes gets cholied, a frost sets in, the contined water freezes, the pillar bursts, down comes the verandah with a cmasl, and alse could they expectafter blindly inviting such a catastrophe?
The fact of ice taliang much longer to melt thim it does to form, as well as that of its hardness being proportionate to the of its hardness being proportionate to the
degree of cold by which it is congrealed,
hang from the valult in the form of festoons. The people are busy all day long
carrying away the ice wourgons and on carrying away the ice 10 waggons and on mules to all phatsot the province, and yet
ine stone is never exhinsted; for one day Whe stome is never exhinasted; for one day
in the modst ot summer produces more than in the madit of summer produces mote bian can be curved of in enght diays. I'his proivulet that flows 11 in pirt of the grotto, which runs in winter, bur is frozen in summer, and all the water through the cavo is filled with thick vipurs."
M. de Marion. ". Dissert, sur in Gatace," Inart
I., sect. 3. chap. 3 .

TRIFLES.

The massive gates of Circumstance Are hamed upon the smathest, hinge, Oft aives our life its after ting The common things scarce worth recalt
ice-palaces of northern regions. "During the hard frost of 1740 , a palace of ice was built it-St. Petersburg aftor the most elegint model, and the justest proportions of Augustine architecture. It was 52 feet ong, and 20 feet high. The materials were and the whole stoorl glistening against the sun with a brilliancy almost equal to its own. To increase the wonder, six cannons fame, two bombs and mortars, all of the same material, were planted before this extraordinary edifice. The cannons were three-pounders; they were clarged with gunpowder and fired off. The ball of one of them pierced an oak plank at 60 paces distant and two inches thick, nor did the iece burst with the explosion."*
There is always a certain sharm about aradoxes, and ice furnishes some that apmarticularly absurd, It seems, at first ;

