pipe and pump which were used to handle the ground water. Fig. 3 shows the Walls of the filter after removal of the forms. The column and roof forms, which were put in place after the removal of the wall forms, are shown in Fig. 6. The roof was reinforced for continuous action. Fig. 4 shows the bent rods between two of the beams. The roof will be covered with a foot of sand to prevent freezing in the filters.
Eight-inch split tile were laid in the gutters of each filter, as shown in Fig. 8. is Fr these the filtered water meters caried through Venturi meters to the pure water ed with. The tile are covered with about i2 inches of graded gravel, the bottom 6 inches passing I in. to $I \mathrm{I} / 2$ in. mesh; the next 3 inches, inches, to I in.; the top 3 this $1 / 20 \mathrm{in}$. to $1 / 4 \mathrm{in}$. Over inches gravel there is laid 42 and of screened, washed and graded sand.
Operation.-When the sand must be washed, it is planned to rake it up into piles, from which it will be shovelled into loweredtor box, which will be Wated through a manhole. tributing from the town disthe box system will flow into will car through a hose, and other carry the sand into another hose leading from the latter side of the box, which sand wose will carry it to the the filterser placed on top of will filters. The washed sand will be carried hydraulically back into the filters. There filter, five manholes for each fellent so there will be excellent light for the cleaning The ground covered by the
filters is falters is $I / 5$ acre, so their capacity is estimated at $600,-$ T_{0} Imperial gallons per day. tion average daily consump200,000 the town at present is ${ }^{200,000}$ gisuallons. During unfire purpands, such as for fire purposes, the filters will hours cable of operating for 24 gallons the rate of $1,600,000$ It is expected to obtain a
bacterial efficiency of 98 per
cent. At present the town

