of the equation, $3 x^{2}+a x+2=0, a$ being supposed to be distinct from zero. Inquire whether the theorem holds good when a is zero.
4. Find in how many ways 12 guineas may be made up of half-guineas and half-crowns.

SOLUTIONS.

I. Let $12+x$ P. $\mathrm{M}=$ correct time in hours.

Then $\frac{12+x}{12}=\frac{12+x+\frac{2 \frac{1}{180}}{80}}{12+x} \therefore(12+x)^{2}-12(12+x)=\frac{381}{808}$.
$\therefore x^{2}+12 x=\frac{301}{801}$ and $x=\frac{1}{30}$ hrs, or $12 \frac{1}{35}$ P. $M=$ c.t. A in $122_{3}^{2} 5$ hrs. gains $2_{\mathrm{T}}^{\frac{1}{8} \sigma} \mathrm{~m}$. \therefore in I hr. A gains 10 seconds and C in one hr. loses $9 \frac{351}{3} \frac{1}{1}$ seconds.
2. Let $x=$ No. of its own leaps the hare was ahead of g. h. at starting. Hare takes 12 leaps in m seconds and hound 9 leaps in same time. 9 of hound's leaps $=13 \frac{1}{2}$ hare's leaps. \therefore hound gains $1 \frac{1}{2}$ hare's leaps in m seconds. \therefore hound gains $\frac{1}{2} x$ leaps in $\frac{m x}{3}$. seconds.
Again, 9 leaps in m sec. $=\frac{9 n}{m}$ in n sec. $\quad \therefore$ increased rate $=\frac{9 n}{m}+1$ in n sec. wh. $=\frac{9 n+m}{9 n}$ of former rate. \therefore time for 2nd half $=\frac{9 n}{9 n+m}$ of time for Ist half $=\frac{m x}{3} \times \frac{9 n}{9 n+m .} . \quad \therefore \frac{m x}{3}-\frac{m x}{3} \times \frac{9 n}{9 n+m}=t$. $\therefore x=3 t\left(\frac{m+9 n}{m^{2}}\right)$.
3. $(a),(m+n) p q=p+q ;(b),(m+n)=(p+q) m m$. I Eq. $\quad x^{2}+\frac{a}{2} x+\frac{3}{2}$ $=0$. Since m and n are the roots, $-\frac{a}{2}=m+n$, and $\frac{3}{2}=m n$. II Eq. x^{2} $+\frac{a}{3} x+\frac{2}{3}=0 \therefore-\frac{a}{3}=$ sum of roots, and $\frac{2}{3}=$ prod. of roots. Substitute in (b) the values of $(m+n)$ and $m m$; then $-\frac{a}{2}=\frac{3}{2}(p+q) \therefore p+$ $q=-\frac{a}{3}$
Again, $-\frac{a}{2} \times p q=-\frac{a}{3} \therefore p q=\frac{2}{3} \therefore p$ and q are the roots of $3 x^{3}$ $+a x+2=0$.
4. Let x and y denote the number of $1 / 2$ crowns and $1 / 2$ guineas, then $5 x+21 y$ $=504 . \quad \therefore$ it can be paid in 4 ways.

Solutions of First Class Algebra Paper for July, I873, the remainder of those for December, 1873 , and of the Intermediate Philosphy, December, IS78, were prepared for this Number, but, having been crowded out, they will appear in our next issue.

