whan
$$n=1$$
, they become
 $(x-y)$ $(ab+xy)$, $(a-b)$ $(ab+xy)$
and when $n=2$, we get
 $(x-y)$ $(ab \overline{x+y} - xy \overline{a+b})$
 $(a-b)$ $(xy \overline{a+b} - ab \overline{x+y})$

6. Let
$$\frac{a}{b} = \frac{c}{d} = x$$

$$\therefore a = bx, c = dx.$$

then substitute these values for a, c, and the equality is established.

7. Let
$$\frac{a}{b} = x, \frac{c}{d} < x$$

$$\therefore a = bx \quad (1)$$

$$\therefore a + c < (b + d) x$$

$$\therefore \frac{a+c}{b+d} < x \cdot < \frac{a}{b}$$

similarly $\frac{a+c}{b+d}$ can be proved to be greater

than
$$\frac{c}{d}$$

again, from (1)
$$ac < bdx^2$$

$$\therefore \frac{ac}{bd} < x^2$$

$$\therefore \text{ sq. rt. of } \frac{ac}{bd} < x \therefore < \frac{a}{b}$$

and similarly it may be proved $> \frac{c}{d}$

$$\frac{a+c}{b+d} > \frac{\sqrt{ac}}{\sqrt{bd}}$$
if $\frac{(a+c)^2}{ac} > \frac{(b+d)^2}{bd}$
if $\frac{a}{c} + \frac{c}{a} > \frac{b}{d} + \frac{d}{b}$
if $\frac{a}{c} - \frac{b}{d} > \frac{d}{b} - \frac{c}{d}$
if $\frac{a}{c} - \frac{b}{d} > \frac{a}{c} - \frac{b}{d}$

$$\frac{a}{cd} = \frac{b}{cd} = \frac{a}{cd}$$
if $\frac{a}{c} - \frac{b}{d} > \frac{a}{cd}$

if
$$1 > \frac{cd}{ab}$$
 and $\frac{a}{c} > \frac{b}{d}$

if $\frac{a}{c} > \frac{d}{b}$ and $\frac{a}{c} > \frac{b}{d}$

or (1) holds if

$$\frac{a}{c} < \frac{b}{d}$$
 and $1 < \frac{cd}{ab}$

if $\frac{a}{c} < \frac{b}{d}$ and $\frac{a}{c} < \frac{d}{d}$

i. e. if $\frac{a}{c}$ does not lie between

$$\frac{b}{d}$$
 and $\frac{d}{b}$

8. Let the last of these ratios = r then the next to the last = r^2 " this = r^4 , &c.

.. the first ratio = last ratio raised to the power 2^{n-z} .

9. Let
$$a = m\sqrt{b}$$
, and $c = n_2b_3$.
... $a^2 = m^2 b$ $a^2 c^2 = m^2 n^2 b^4$.
... $ac = mnb^2$.
... ac varies as b^2 .

10. I, I.

$$11. x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

... in order that these values of x may be positive integers, $b^2 - 4ac$ must be a complete square, z^2 suppose,

$$\therefore x = -\frac{\delta \pm z}{2a}$$

... also b + z and b - z must be multiples of 2a and b and a must have different signs.

13.
$$\frac{(H-a)(H-b)}{G^2}$$

$$= \frac{H^2 - a + b H + ab}{G^2}$$

$$= \frac{H^2 - a + b H}{G_2 - G^2} + \frac{ab}{G^2}$$

$$= \frac{H}{A} - \frac{a+b}{A} + I, \text{ since } G_2 = AH.$$