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whan 2=I, they become
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and when =2, we get
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then substitute these values for a, ¢, and the

equality is established.
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8. Let the last of these ratios = 7»

then the next to the last = »2
* this = ri, &ec.
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-, the first ratio = last ratio raised to the

power 2%

9. Leta =m\/b, and ¢z =1,
S QT = mR b, oL QR R == m? 02 b4

o ac = mnb?
. ac varies as &=

10. I, X,
—bt= \/62._4a[

I1I. x =
22

.. in order that these values of x may be
positive integers, 42 — 4ac must be a complete

square, 22 suppose,
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.*. also 4 -+ z and & — z must be multiples of
2a and b and @ must have different signs.
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